Search results for "Spheres"
showing 10 items of 329 documents
Glass transition for dipolar hard spheres: A mode-coupling approach
1998
Abstract We apply the self-consistent mode-coupling equations, which were recently derived for molecular liquids, to a system of dipolar hard spheres. Making use of the direct correlation function in a mean spherical approximation and with a restriction of the rotational quantum number 1 to zero and one, we find three different phases in the η—T phase space. η and T denote the packing fraction and the temperature respectively. There is one phase where both the transitional degrees of freedom (TDOFs) and the orientational degrees of freedom (ODOFs) are ergodic (liquid), another phase with frozen TDOFs and ergodic ODOFs, and a third phase where TDOFs and ODOFs are frozen (glass). The dynamica…
Brownian dynamics simulations of colloidal hard spheres. Effects of sample dimensionality on self-diffusion
1994
The self-diffusion coefficients of colloidal hard spheres were determined by Brownian dynamics (BD) computer simulations using a new efficient algorithm for treatment of the hard-sphere interactions. Calculations were done on an Apple PC type MacIIcx and on a Micro VAX 3000, considering samples in two and three dimensions at varying particle concentrations. Our results in three dimensions are compared with experimental results from our own group which were obtained by forced Rayleigh scattering (FRS), and with numerical results from a dynamical Monte Carlo simulation by Cichocki and Hinsen. Good agreement with the latter was found for particle volume fractions up to 0.40. Differences in the…
Approximate Modeling of Spherical Membrane
2010
Spherical symmetry is ubiquitous in nature. It's therefore unfortunate that spherical system simulations are so hard, and require complete spheres with millions of interacting particles. Here we introduce an approach to model spherical systems, using revised periodic boundary conditions adapted to spherical symmetry. Method reduces computational costs by orders of magnitude, and is applicable for both solid and liquid membranes, provided the curvature is sufficiently small. We demonstrate the method by calculating the bending and Gaussian curvature moduli of single- and multi-layer graphene. Method works with any interaction (ab initio, classical interactions), with any approach (molecular …
Dynamic Self-assembly of Non-Brownian Spheres.
2017
International audience; Granular self-assembly of confined non-Brownian spheres under gravity is studied by Molecular Dynamics simulations. Starting from a disordered phase, dry or cohesive spheres organize, by vibrational an-nealing into BCT or FCC structures, respectively. During the self-assembling process, isothermal and isodense points are observed. The existence of such points indicates that both granular temperature and packing fraction undergo an inversion process. Around the isothermal point, a sudden growth of beads having the maximum coordination number takes place. We show by a density fluctuation analysis that a transition form a disordered phase to a crystalline structure may …
COLLECTIVE SPIN EXCITATIONS OF ALKALI-METAL CLUSTERS
1993
The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L=1) and quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density approximation of density-functional theory. We predict the existence of low-energy spin modes of surface type, which are identified from the strength function. Their collectivity and evolution with size are discussed.
Close packing of clusters: Application toAl100
2003
The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from…
Microscopic dynamics of molecular liquids and glasses: Role of orientations and translation-rotation coupling
2001
We investigate the dynamics of a fluid of dipolar hard spheres in its liquid and glassy phase, with emphasis on the microscopic time or frequency regime. This system shows rather different glass transition scenarios related to its rich equilibrium behavior which ranges from a simple hard sphere fluid to a long range ferroelectric orientational order. In the liquid phase close to the ideal glass transition line and in the glassy regime a medium range orientational order occurs leading to a softening of an orientational mode. To investigate the role of this mode we use the molecular mode-coupling equations to calculate the spectra $\phi_{lm}^{\prime \prime}(q,\omega)$ and $\chi _{lm}''(q,\ome…
A New Look at Spitzer Primary Transit Observations of the Exoplanet HD 189733b
2014
Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent wa…
A generalization of the Carnahan–Starling approach with applications to four- and five-dimensional hard spheres
2018
Abstract Development of good equations of state for hard spheres is an important task in the study of real fluids. In a way consistent with other theoretical results, we generalize the famous Carnahan–Starling approach for arbitrary dimensions and apply it to four- and five-dimensional hard spheres. We obtain simple and integer representations for virial coefficients of lower orders and accurate equations of state. Since theoretically and practically validated, these results improve understanding of hard sphere fluids.
Field propagator of a dressed junction: Fluorescence lifetime calculations in a confined geometry
1997
The study of the fluorescence phenomenon by near-field optical techniques requires one to describe precisely the spontaneous emission change occurring when the fluorescing particle is placed in a complex optical environment. For this purpose, the field susceptibility (also called the field propagator) of a planar junction formed by a cavity bounded by two semi-infinite bodies with arbitrary optical constant is derived within the framework of linear-response theory. The field propagator associated with the junction is then modified in a self-consistent manner to account for the presence of any arbitrary object inside the junction. As a first illustration the alteration of the fluorescence li…