Search results for "Spiking neural network"

showing 3 items of 13 documents

Fast spiking neural network architecture for low-cost FPGA devices

2012

Spiking Neural Networks (SNN) consist of fully interconnected computation units (neurons) based on spike processing. This type of networks resembles those found in biological systems studied by neuroscientists. This paper shows a hardware implementation for SNN. First, SNN require the inputs to be spikes, being necessary a conversion system (encoding) from digital values into spikes. For travelling spikes, each neuron interconnection is characterized by weights and delays, requiring an internal neuron processing by a Postsynaptic Potential (PSP) function and membrane potential threshold evaluation for a postsynaptic output spike generation. In order to model a real biological system by arti…

Spiking neural networkReduction (complexity)InterconnectionComputer sciencebusiness.industryComputationEncoding (memory)Real-time computingSpike (software development)Function (mathematics)Field-programmable gate arraybusinessComputer hardware7th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC)
researchProduct

Frequency spike encoding using Gabor-like receptive fields

2014

Abstract Spiking Neural Networks (SNN) are a popular field of study. For a proper development of SNN algorithms and applications, special encoding methods are required. Signal encoding is the first step since signals need to be converted into spike trains as the primary input to an SNN. We present an efficient frequency encoding system using receptive fields. The proposed encoding is versatile and it can provide simple image transforms like edge detection, spot detection or removal, or Gabor-like filtering. The proposed encoding can be used in many application areas as image processing and signal processing for detection and classification.

Spiking neural networkSignal processingReceptive fieldbusiness.industryComputer scienceEncoding (memory)Spike (software development)Image processingComputer visionArtificial intelligencebusinessEdge detectionField (computer science)IFAC Proceedings Volumes
researchProduct

Event-Based Trajectory Prediction Using Spiking Neural Networks

2021

International audience; In recent years, event-based sensors have been combined with spiking neural networks (SNNs) to create a new generation of bio-inspired artificial vision systems. These systems can process spatio-temporal data in real time, and are highly energy efficient. In this study, we used a new hybrid event-based camera in conjunction with a multi-layer spiking neural network trained with a spike-timing-dependent plasticity learning rule. We showed that neurons learn from repeated and correlated spatio-temporal patterns in an unsupervised way and become selective to motion features, such as direction and speed. This motion selectivity can then be used to predict ball trajectory…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]PolynomialComputer scienceNeuroscience (miscellaneous)Neurosciences. Biological psychiatry. Neuropsychiatry02 engineering and technologyunsupervised learningSNN[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]STDP03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineLearning rule0202 electrical engineering electronic engineering information engineeringEvent (probability theory)Original ResearchSpiking neural networkQuantitative Biology::Neurons and Cognitionmotion selectivitybusiness.industry[SCCO.NEUR]Cognitive science/Neuroscience[SCCO.NEUR] Cognitive science/NeuroscienceProcess (computing)Pattern recognitionspiking cameraTrajectoryball trajectory predictionUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusiness030217 neurology & neurosurgeryEfficient energy useNeuroscienceRC321-571Frontiers in Computational Neuroscience
researchProduct