Search results for "Spin Hall effect"

showing 10 items of 48 documents

Origin of the spin Seebeck effect in compensated ferrimagnets

2016

Magnons are the elementary excitations of a magnetically ordered system. In ferromagnets, only a single band of low-energy magnons needs to be considered, but in ferrimagnets the situation is more complex owing to different magnetic sublattices involved. In this case, low lying optical modes exist that can affect the dynamical response. Here we show that the spin Seebeck effect (SSE) is sensitive to the complexities of the magnon spectrum. The SSE is caused by thermally excited spin dynamics that are converted to a voltage by the inverse spin Hall effect at the interface to a heavy metal contact. By investigating the temperature dependence of the SSE in the ferrimagnet gadolinium iron garne…

GadoliniumScienceGeneral Physics and Astronomychemistry.chemical_elementNanotechnology02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleCondensed Matter::Materials Sciencephysical sciencesFerrimagnetism0103 physical sciencesThermoelectric effectddc:530010306 general physicsSpin-½PhysicsMultidisciplinarycondensed matterCondensed matter physicsMagnonQGeneral Chemistry021001 nanoscience & nanotechnology3. Good healthFerromagnetismchemistryExcited stateSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Communications
researchProduct

Spin Hanle effect in mesoscopic superconductors

2014

Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).

Hanle effectPhysicsta114Condensed Matter - Mesoscale and Nanoscale PhysicsSpin polarizationCondensed matter physicsCondensed Matter - SuperconductivitySpin valveFOS: Physical sciencesSpin engineeringmesoscopic superconductorsCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect7. Clean energyElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Spin waveCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hanle effectSpinplasmonicsSpin Hall effectCondensed Matter::Strongly Correlated ElectronsSpin-½
researchProduct

Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers

2015

Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. In contrast to the chiral edge states of the quantum Hall exciton condensate in electron-electron bilayers, existence of the counterpropagating edge modes results in formation of a ground state spin-texture not supporting gapless single-particle excitations. This feature has deep consequences for the low energy behavior of the system. Namely, the charged edge excitations in a sufficiently narrow Hall bar are confined, i…

High Energy Physics - TheorySpontaneous symmetry breakingHigh Energy Physics::LatticeScienceFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyQuantum Hall effect01 natural sciencesDeconfinementGeneral Biochemistry Genetics and Molecular BiologyArticleQuantum spin Hall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsSpin (physics)PhysicsCondensed Matter::Quantum GasesMultidisciplinaryta114Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherQHall effectGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthMagnetic fieldHigh Energy Physics - Theory (hep-th)Fractional quantum Hall effectAtomic physics0210 nano-technologyGround statebilayers
researchProduct

Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

2018

Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …

Materials scienceAcoustics and Ultrasonics530 Physicsterahertz emission spectroscopyFOS: Physical sciences02 engineering and technology01 natural sciencesTransition metalHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultrafast spincaloritronics010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSterahertz emission spectroscopy; terahertz transmission spectroscopy; ultrafast spintronics; ultrafast spincaloritronicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryRelaxation (NMR)Refractory metalsMaterials Science (cond-mat.mtrl-sci)621021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTerahertz spectroscopy and technologyterahertz transmission spectroscopyultrafast spintronicsSpin Hall effect[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusiness
researchProduct

Heusler Compounds at a Glance

2013

The class of Heusler compounds, including the XYZ and the X 2 YZ compounds, does not only have an endless number of members, but also a vast variety of properties can be found in this class of materials, ranging from semi-conductors, half-metallic ferromagnets, superconductors, and topological insulators to shape memory alloys. With this chapter, we would like to provide an overview of Heusler compounds, focusing on basis design principles, their properties and potential applications.

Materials scienceCondensed matter physicsFerromagnetismQuantum spin Hall effectTopological insulatorengineeringDesign elements and principlesengineering.materialHeusler compound
researchProduct

Enhancement of spin Hall conductivity in W-Ta alloy

2020

Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120…

Materials sciencePhysics and Astronomy (miscellaneous)530 PhysicsAlloyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesMetalCondensed Matter::Materials ScienceElectrical resistivity and conductivity0103 physical sciencesSpin-½010302 applied physicsCondensed Matter - Materials ScienceCondensed matter physicsEnergy conversion efficiencyMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology530 PhysikFerromagnetic resonanceFerromagnetismvisual_artSpin Hall effectvisual_art.visual_art_mediumengineeringCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Importance of spin current generation and detection by spin injection and the spin Hall effect for lateral spin valve performance.

2018

Lateral spin valves are attractive device geometries where functional spin currents can be generated and detected by various mechanisms, such as spin injection and the direct and the inverse spin Hall effect. To understand the mechanisms behind these effects better, as well as their potential for application in devices, we combine multiple mechanisms in multi-terminal Pt-Py-Cu lateral spin valves: we generate pure spin currents in the copper spin conduit both via the spin Hall effect in platinum and electric spin injection from permalloy and detect signals both via conventional non-local detection and via the inverse spin Hall effect in the same device at variable temperatures. Differences …

PermalloyMaterials scienceCondensed matter physics530 PhysicsSpin valve02 engineering and technologySpin current530 Physik021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0103 physical sciencesSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceCurrent (fluid)010306 general physics0210 nano-technologySpin injectionSpin-½Journal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems.

2020

Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the c…

PhysicsCondensed Matter - Materials ScienceAngular momentumCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsEquations of motionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesArticleMagnetizationFerromagnetismHall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectTorqueddc:530Density functional theoryAstrophysics::Earth and Planetary AstrophysicsPhysical review research
researchProduct

Anomalous Hall effect driven by dipolar spin waves in uniform ferromagnets

2015

A new type of anomalous Hall effect is shown to arise from the interaction of conduction electrons with dipolar spin waves in ferromagnets. This effect exists even in homogeneous ferromagnets without relativistic spin-orbit coupling. The leading contribution to the Hall conductivity is proportional to the chiral spin correlation of dynamical spin textures and is physically understood in terms of the skew scattering by dipolar magnons.

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpin polarizationMagnonExchange interactionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum spin Hall effectSpin waveHall effectQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectCondensed Matter::Strongly Correlated ElectronsSpin-½Physical Review B
researchProduct

Spin accumulation from nonequilibrium first principles methods

2021

For the technologically relevant spin Hall effect, most theoretical approaches rely on the evaluation of the spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation at interfaces and surfaces is the relevant quantity. Here, we directly calculate the accumulation of spins due to the spin Hall effect at the surface of a thin metallic layer, making quantitative predictions for different materials. Two distinct limits are considered, both relying on a fully relativistic Korringa-Kohn-Rostoker density functional theory method. In the semiclassical approach, we use the Boltzmann transport formalism and compare it directly with a fully quantu…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsSpinsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesNon-equilibrium thermodynamicsSemiclassical physicscond-mat.mtrl-sciKeldysh formalismCondensed Matter - Other Condensed Mattercond-mat.otherSpin Hall effectDensity functional theoryTensorOther Condensed Matter (cond-mat.other)Spin-½Physical Review B
researchProduct