Search results for "Spin Hall effect"
showing 10 items of 48 documents
Origin of the spin Seebeck effect in compensated ferrimagnets
2016
Magnons are the elementary excitations of a magnetically ordered system. In ferromagnets, only a single band of low-energy magnons needs to be considered, but in ferrimagnets the situation is more complex owing to different magnetic sublattices involved. In this case, low lying optical modes exist that can affect the dynamical response. Here we show that the spin Seebeck effect (SSE) is sensitive to the complexities of the magnon spectrum. The SSE is caused by thermally excited spin dynamics that are converted to a voltage by the inverse spin Hall effect at the interface to a heavy metal contact. By investigating the temperature dependence of the SSE in the ferrimagnet gadolinium iron garne…
Spin Hanle effect in mesoscopic superconductors
2014
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers
2015
Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. In contrast to the chiral edge states of the quantum Hall exciton condensate in electron-electron bilayers, existence of the counterpropagating edge modes results in formation of a ground state spin-texture not supporting gapless single-particle excitations. This feature has deep consequences for the low energy behavior of the system. Namely, the charged edge excitations in a sufficiently narrow Hall bar are confined, i…
Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20
2018
Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …
Heusler Compounds at a Glance
2013
The class of Heusler compounds, including the XYZ and the X 2 YZ compounds, does not only have an endless number of members, but also a vast variety of properties can be found in this class of materials, ranging from semi-conductors, half-metallic ferromagnets, superconductors, and topological insulators to shape memory alloys. With this chapter, we would like to provide an overview of Heusler compounds, focusing on basis design principles, their properties and potential applications.
Enhancement of spin Hall conductivity in W-Ta alloy
2020
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120…
Importance of spin current generation and detection by spin injection and the spin Hall effect for lateral spin valve performance.
2018
Lateral spin valves are attractive device geometries where functional spin currents can be generated and detected by various mechanisms, such as spin injection and the direct and the inverse spin Hall effect. To understand the mechanisms behind these effects better, as well as their potential for application in devices, we combine multiple mechanisms in multi-terminal Pt-Py-Cu lateral spin valves: we generate pure spin currents in the copper spin conduit both via the spin Hall effect in platinum and electric spin injection from permalloy and detect signals both via conventional non-local detection and via the inverse spin Hall effect in the same device at variable temperatures. Differences …
Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems.
2020
Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the c…
Anomalous Hall effect driven by dipolar spin waves in uniform ferromagnets
2015
A new type of anomalous Hall effect is shown to arise from the interaction of conduction electrons with dipolar spin waves in ferromagnets. This effect exists even in homogeneous ferromagnets without relativistic spin-orbit coupling. The leading contribution to the Hall conductivity is proportional to the chiral spin correlation of dynamical spin textures and is physically understood in terms of the skew scattering by dipolar magnons.
Spin accumulation from nonequilibrium first principles methods
2021
For the technologically relevant spin Hall effect, most theoretical approaches rely on the evaluation of the spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation at interfaces and surfaces is the relevant quantity. Here, we directly calculate the accumulation of spins due to the spin Hall effect at the surface of a thin metallic layer, making quantitative predictions for different materials. Two distinct limits are considered, both relying on a fully relativistic Korringa-Kohn-Rostoker density functional theory method. In the semiclassical approach, we use the Boltzmann transport formalism and compare it directly with a fully quantu…