Search results for "Spinasterol"

showing 5 items of 5 documents

An expeditious synthesis of spinasterol and schottenol, two phytosterols present in argan oil and in cactus pear seed oil, and evaluation of their bi…

2015

International audience; Spinasterol and schottenol, two phytosterols present in argan oil and in cactus pear seed oil, were synthesized from commercially available stigmasterol by a four steps reactions. In addition, the effects of these phytosterols on cell growth and mitochondrial activity were evaluated on 158N murine oligodendrocytes, C6 rat glioma cells, and SK-N-BE human neuronal cells with the crystal violet test and the MTT test, respectively. The effects of spinasterol and schottenol were compared with 7-ketocholesterol (71CC) and ferulic acid, which is also present in argan and cactus pear seed oil. Whatever the cells considered, dose dependent cytotoxic effects of 71CC were obser…

Central Nervous Systemfood.ingredientCrystal violet testClinical BiochemistryStigmasterol[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Argan oilOrganic synthesisBiologyBiochemistryCell LineFerulic acidPyruschemistry.chemical_compoundMiceEndocrinologyfoodSchottenolCytotoxic T cellAnimalsHumansPlant OilsMolecular BiologySpinasterolCell ProliferationPharmacologyPEARMIT testStigmasterolCell growthOrganic ChemistryPhytosterolsNervous cellsSitosterolsMitochondriaRatsSpinasterolchemistryBiochemistryCactusSeeds
researchProduct

Triterpenoid saponins from the roots of Spergularia marginata.

2016

Phytochemical investigations of the roots of Spergularia marginata had led to the isolation of four previously undescribed triterpenoid saponins, a known one and one spinasterol glycoside. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L- arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)- α-L-arabinopyranosyl ester, 3-O-β-D-glucopy…

StereochemistryCaryophyllaceaeCaryophyllaceaePlant ScienceHorticulture01 natural sciencesBiochemistryPlant Rootschemistry.chemical_compoundTriterpenoidHumansOleanolic AcidCytotoxicityMolecular BiologyNuclear Magnetic Resonance Biomolecularchemistry.chemical_classificationbiologyMolecular Structure010405 organic chemistryGlycosideGeneral MedicineSaponinsbiology.organism_classificationTriterpenes0104 chemical sciences010404 medicinal & biomolecular chemistryMoroccoSpinasterolchemistryPhytochemicalTwo-dimensional nuclear magnetic resonance spectroscopySpergulariaPhytochemistry
researchProduct

Omphalocarpoidone, a new lanostane-type furano-spiro-γ-lactone from the wood of Tridesmostemon omphalocarpoides Engl. (Sapotaceae)

2013

Abstract Phytochemical studies of the wood and the stem bark of Tridesmostemon omphalocarpoides Engl. (Sapotaceae) led to the isolation of omphalocarpoidone (1), a new lanostane-type furano-spiro-γ-lactone together with β-amyrin acetate (2), taraxerol (3), spinasterol (4), lichexanthone (5), epi-catechin (6), spinasterol 3-O-β- d -glucopyranoside (7), tormentic acid (8), and 1,2,3,4-tetrahydronorharman-1-one (9). Their structures were established on the basis of extensive NMR studies, mass spectrometry, and by comparison of the data with those previously reported in the literature. The structure of the new secondary metabolite was later confirmed by X-ray crystallography. Except for spinast…

chemistry.chemical_classificationStereochemistryTormentic acidPlant ScienceSecondary metaboliteBiologybiology.organism_classificationBiochemistryLanostaneSapotaceaeTaraxerolchemistry.chemical_compoundSpinasterolchemistryTriterpenemedicineOrganic chemistryAgronomy and Crop ScienceLactoneBiotechnologymedicine.drugPhytochemistry Letters
researchProduct

Profile of Fatty Acids, Tocopherols, Phytosterols and Polyphenols in Mediterranean Oils (Argan Oils, Olive Oils, Milk Thistle Seed Oils and Nigella S…

2019

Background: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. Objective: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). Methods: The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant …

0301 basic medicineAntioxidantmedicine.medical_treatmentLinoleic acidmediterranean oilsTocopherolsAntioxidantsCell LineMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDrug DiscoverymedicineAnimalsHumansMilk ThistlePlant OilsFood sciencecytoprotective activitiesOlive OilNigella2. Zero hungerPharmacologybiologyPhytosterolFatty AcidsPhytosterolsPolyphenolsfood and beverages[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciencesbiology.organism_classificationNigellaantioxidant propertiesOleic acid030104 developmental biologySpinasterolchemistryPolyphenol030220 oncology & carcinogenesisSeedsHydroxytyrosol[SDV.AEN]Life Sciences [q-bio]/Food and NutritionCurrent Pharmaceutical Design
researchProduct

Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial B…

2014

International audience; The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitoch…

Argan oilABCA1Biochemistrychemistry.chemical_compoundMice0302 clinical medicineSchottenolBV2 cellspolycyclic compoundsCactus oilATP Binding Cassette Transporter Subfamily G Member 1Liver X ReceptorsMembrane Potential Mitochondrial0303 health sciencesbiologyOpuntiafood and beveragesPhytosterolsOrphan Nuclear ReceptorsSterolsBiochemistryABCG1030220 oncology & carcinogenesisSeeds[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]lipids (amino acids peptides and proteins)LXRMicrogliaATP Binding Cassette Transporter 1food.ingredientABCG1LipoproteinsBiophysicsStigmasterol[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Ficus indicaCell Line03 medical and health sciencesfoodAnimalsPlant OilsLiver X receptorMolecular BiologySpinasterol030304 developmental biologyCholesterolCell BiologySitosterolsSterolSpinasterolchemistryNuclear receptorGene Expression RegulationArgan oilABCA1biology.proteinATP-Binding Cassette Transporters
researchProduct