Search results for "Spintronics"

showing 10 items of 231 documents

Gradual phase transition from ferromagnetic tetragonal to antiferromagnetic cubic states in Mn Ga (1.80 ≤ x ≤ 3.03) thin films

2019

Abstract The structural, magnetic, and electronic properties of MnxGa thin films are investigated as varying the Mn composition (1.80 ≤ x ≤ 3.03). The variation of x in MnxGa films dramatically changes the crystal structure as well as the magnetic properties. With increasing x, we observe the gradual phase transition from a ferromagnetic tetragonal state to an antiferromagnetic cubic state. The structural characterization reveals that the D022 tetragonal structure of Mn2Ga is slowly transformed to the L12 cubic structure of Mn3Ga. Two phases coexist around x = 2.4. The magnetization is systematically reduced as x increases, ending to an antiferromagnetic state of cubic Mn3Ga, and the electr…

Phase transitionMaterials scienceCondensed matter physicsSpintronicsMechanical EngineeringMetals and Alloys02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetizationTetragonal crystal systemFerromagnetismMechanics of MaterialsPhase (matter)Materials ChemistryAntiferromagnetism0210 nano-technologyJournal of Alloys and Compounds
researchProduct

Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.

2016

Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such a…

Phosphorous AcidsSurface PropertiesElectrical Equipment and SuppliesNanotechnologyElectrons02 engineering and technology010402 general chemistry01 natural sciencesMolecular engineeringLanthanumMonolayerGeneral Materials ScienceAlkylchemistry.chemical_classificationSpintronicsMagnetic PhenomenaSelf-assembled monolayerOxides021001 nanoscience & nanotechnologyCondensed Matter Physics3. Good health0104 chemical sciencesTunnel magnetoresistancechemistryFerromagnetismManganese CompoundsStrontiumMagnetsSurface modification0210 nano-technologyJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

2013

Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electro…

PhotoluminescenceMaterials scienceGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesSpin-Orbit InteractionHyperfine structureComputingMilieux_MISCELLANEOUSCondensed matter physicsSpintronicsbusiness.industryOrganic SemiconductorRelaxation (NMR)Settore FIS/01 - Fisica SperimentaleSpin–orbit interactionMuon spin spectroscopy021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorElectron Spin RelaxationCondensed Matter::Strongly Correlated Electrons[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologybusiness
researchProduct

Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications

2014

Physics of Nanosystems Spintronics Technological ApplicationsSettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Linear and nonlinear spin dynamics in multi-domain magnetoelastic antiferromagnets

2021

Antiferromagnets have recently surged as the prominent material platform for the next generation spintronics devices. Despite the remarkable abundance of antiferromagnets and the variety of their spin textures in nature, they share a widely common, if not ubiquitous, feature. Magnetoelasticity, which is expressed as strictions of different origin, relativistic and/or exchange, significantly contributes to the magnetic anisotropy of antiferromagnets. Crucially, a general theoretical framework able to address the role of domain walls on the spin dynamics in antiferromagnets in the presence of magnetoelasticity is lacking. Here we tackle this problem developing a very general macroscopic pheno…

PhysicsAcoustics and UltrasonicsSpin dynamicsSpintronicsCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDomain (software engineering)Nonlinear systemMagnetic anisotropytheory antiferromagnets spin dynamics nonlinear phenomenaPhenomenological modelAntiferromagnetismCondensed Matter::Strongly Correlated Electronsddc:530Statistical physicsSpin-½
researchProduct

Skyrmion Dynamics – from thermal diffusion to ultra-fast motion

2018

Summary form only given. Spintronics promises to be a paradigm shift from using the charge degree of freedom to using the spin degree of freedom. To this end three key requirements are: (i) stable spin structures for long term data retention; (ii) efficient spin manipulation for low power devices and (iii) ideally no susceptibility to stray fields as realized for antiferromagnets. We explore different materials classes to tackle these challenges and explore the science necessary for a disruptive new technology. To obtain ultimate stability, topological spin structures that emerge due to the Dzyaloshinskii-Moriya interaction (DMI), such as chiral domain walls and skyrmions are used. These po…

PhysicsAngular momentumSpintronicsCondensed matter physicsField (physics)SkyrmionQuasiparticleEquations of motionSpin structureSpin-½2018 IEEE International Magnetics Conference (INTERMAG)
researchProduct

Magnon transport in the presence of antisymmetric exchange in a weak antiferromagnet

2021

The Dzyaloshinskii-Moriya interaction (DMI) is at the heart of many modern developments in the research field of spintronics. DMI is known to generate noncollinear magnetic textures, and can take two forms in antiferromagnets: homogeneous or inter-sublattice, leading to small, canted moments and inhomogeneous or intra-sublattice, leading to formation of chiral structures. In this work, we first determine the strength of the effective field created by the DMI, using SQUID based magnetometry and transport measurements, in thin films of the antiferromagnetic iron oxide hematite, $\alpha$-Fe$_2$O$_3$. We demonstrate that DMI additionally introduces reconfigurability in the long distance magnon …

PhysicsCondensed Matter - Materials ScienceAntisymmetric exchangeField (physics)SpintronicsCondensed matter physicsMagnetometerMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldlaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsZeeman energy010306 general physics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Concepts of antiferromagnetic spintronics

2017

Antiferromagnetic spintronics is an emerging research field whose focus is on the electrical and optical control of the antiferromagnetic order parameter and its utility in information technology devices. An example of recently discovered new concepts is the N\'{e}el spin-orbit torque which allows for the antiferromagnetic order parameter to be controlled by an electrical current in common microelectronic circuits. In this review we discuss the utility of antiferromagnets as active and supporting materials for spintronics, the interplay of antiferromagnetic spintronics with other modern research fields in condensed matter physics, and its utility in future "More than Moore" information tech…

PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsField (physics)SpintronicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesEngineering physicsElectrical currentOptical controlMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsGeneral Materials Science010306 general physics0210 nano-technologyMicroelectronic circuitsphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures

2017

We investigate the spin Hall magnetoresistance in thin-film bilayer heterostructures of the heavy metal Pt and the antiferromagnetic insulator NiO. While rotating an external magnetic field in the easy plane of NiO, we record the longitudinal and the transverse resistivity of the Pt layer and observe an amplitude modulation consistent with the spin Hall magnetoresistance. In comparison to Pt on collinear ferrimagnets, the modulation is phase shifted by ${90}^{\ensuremath{\circ}}$ and its amplitude strongly increases with the magnitude of the magnetic field. We explain the observed magnetic field dependence of the spin Hall magnetoresistance in a comprehensive model taking into account magne…

PhysicsCondensed Matter - Materials ScienceMagnetoresistanceSpintronicsCondensed matter physicsSpin polarizationCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyQuantum Hall effect021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesSpin magnetic momentCondensed Matter::Materials ScienceQuantum spin Hall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSpin Hall effectAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses

2016

Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic …

PhysicsCondensed Matter - Materials SciencePhysics and Astronomy (miscellaneous)SpintronicsField (physics)RatchetDynamics (mechanics)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyRatchet effectMagnetostatics01 natural sciencesMagnetic fieldDomain (software engineering)Classical mechanics0103 physical sciences010306 general physics0210 nano-technologyComputer Science::Operating SystemsApplied Physics Letters
researchProduct