Search results for "Square lattice"
showing 6 items of 46 documents
Partition function of the trigonometric SOS model with reflecting end
2010
We compute the partition function of the trigonometric SOS model with one reflecting end and domain wall type boundary conditions. We show that in this case, instead of a sum of determinants obtained by Rosengren for the SOS model on a square lattice without reflection, the partition function can be represented as a single Izergin determinant. This result is crucial for the study of the Bethe vectors of the spin chains with non-diagonal boundary terms.
Effective electrical conductivity of microstructural patterns of binary mixtures on a square lattice in the presence of nearest-neighbour interactions
2018
Abstract The effective conductivity and percolative behaviour of microstructural patterns of binary mixtures are studied. Microstructure patterns are not entirely random, but result from the presence of attractive or repulsive interactions and thermal fluctuations. The interactions of the particles with one another lead to the formation of correlations between particle positions, while thermal fluctuations weaken these correlations. A simple lattice model is used, where each site is occupied by a single particle, and interactions can occur only between the nearest neighbours. The Kawasaki algorithm is adopted to create 2D microstructure samples. The microstructure is treated as a continuous…
Locally Frozen Defects in Random Sequential Adsorption with Diffusional Relaxation
1993
Random sequential adsorption with diffusional relaxation, of two by two square objects on the two-dimensional square lattice is studied by Monte Carlo computer simulation. Asymptotically for large lattice sizes, diffusional relaxation allows the deposition process to reach full coverage. The coverage approaches the full occupation value, 1, as a power-law with convergence exponent near 1/2. For a periodic lattice of finite (even) size $L$, the final state is a frozen random rectangular grid of domain walls connecting single-site defects. The domain sizes saturate at L**0.8. Prior to saturation, i.e., asymptotically for infinite lattice, the domain growth is power-law with growth exponent ne…
Ordering and demixing transitions in multicomponent Widom-Rowlinson models.
1995
We use Monte Carlo techniques and analytical methods to study the phase diagram of multicomponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M between two and six there is a direct transition from the gas phase at z < z_d (M) to a demixed phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In this phase, which is driven by entropy, particles, independent of species, preferentially occupy one of the sublattices, i.e. spatial symmetry but not …
Confined binary two-dimensional colloidal crystals: Monte Carlo simulation of crack formation.
2010
Binary mixtures (A, B) of colloidal particles of different sizes in two dimensions may form crystals with square lattice structure (the A-particles occupying the white sites and the B-particles the black sites of a checkerboard). Confining such a system by two parallel 'walls' a distance D apart, long-range order in the direction parallel to the walls is stabilized by 'corrugated walls' that are commensurate with the lattice structure but destabilized by structureless 'hard walls', even if there is no misfit between the strip width D and the crystal lattice spacing. The crossover to quasi-one-dimensional behavior is studied by Monte Carlo simulations, analyzing Lindemann parameters and disp…
A Monte Carlo Study of Living Polymers in 2D: Effect of Small Chains on Static Properties
1996
A slithering snake algorithm is combined with a binding and breaking chain algorithm to simulate the static behavior of living polymers according to Cates' description. It is shown that this simple two-dimensional simulation on a square lattice gives good agreement with the mean field theory. However, the large amount of small contour length chains for small values of the mean average length 〈L 〉 appears to be one of the reasons for the discrepancies observed between the simulated results and the mean field theory. This finding could explain disagreements between experimental observation and theory. Also, the results are not in favor of a swelling of the greater chains by the smaller one.