Search results for "State."
showing 10 items of 8943 documents
Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies
2020
The first-principles (ab initio) computations of the structural, electronic, and phonon properties have been performed for cubic and low-temperature tetragonal phases of BaTiO3 and SrTiO3 perovskite crystals, both stoichiometric and non-stoichiometric (with neutral oxygen vacancies). Calculations were performed with the CRYSTAL17 computer code within the linear combination of atomic orbitals approximation, using the B1WC advanced hybrid exchange-correlation functional of the density-functional-theory (DFT) and the periodic supercell approach. Various possible spin states of the defective systems were considered by means of unrestricted (open shell) DFT calculations. It was demonstrated that…
Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals
2020
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).
Effects of water removal on the structure and spin-crossover in an anilato-based compound
2021
The crucial role played by a crystallization water molecule in the spin crossover (SCO) temperature and its hysteresis is described and discussed in compound [NBu4][Fe(bpp)2][Cr(C6O4Br2)3]⋅2.5H2O (1), where bpp = 2,6-bis(pyrazol-3-yl)pyridine and (C6O4Br2)2− = dianion of the 3,6-dibromo-2,5-dihydroxy-1,4-benzoquinone. The compound has isolated [Fe(bpp)2]2+ cations surrounded by chiral [Cr(C6O4Br2)3]3− anions, NBu4+ cations, and a water molecule H-bonded to one of the non-coordinated N–H groups of one bpp ligand. This complex shows a gradual almost complete two-step spin transition centered at ca. 180 and 100 K with no hysteresis. The loss of the water molecules results in a phase transition…
Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields
2019
Abstract We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.
High-frequency EPR study on Cu4Cu- and Co4Co-metallacrown complexes
2019
Abstract High-frequency/high-field electron paramagnetic resonance studies on two homonuclear 12-MC-4 metallacrown complexes Cu4Cu and Co4Co are presented. For Cu4Cu, our data imply axial-type g-anisotropy with g x = 2.03 ± 0.01 , g y = 2.04 ± 0.01 , and g z = 2.23 ± 0.01 , yielding g = 2.10 ± 0.02 . No significant zero field splitting (ZFS) of the ground state mode is observed. In Co4Co, we find a m S = ± 3 / 2 ground state with g = 2.66 . The data suggest large anisotropy D of negative sign.
Piezo-electrical control of gyration dynamics of magnetic vortices
2019
In this work, we first statically image the electrically controlled magnetostatic configuration of magnetic vortex states and then we dynamically image the time-resolved vortex core gyration tuned by electric fields. We demonstrate the manipulation of the vortex core gyration orbit by engineering the magnetic anisotropies. We achieve this by electric fields in a synthetic heterostructure consisting of a piezoelement coupled with magnetostrictive microstructures, where the magnetic anisotropy can be controlled by strain. We directly show the strong impact of the tailored anisotropy on the static shape of the vortex state and the dynamic vortex core orbit. The results demonstrate the possibil…
Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the Cu 2 ZnSnS 4 Absorber of Model Solar Cells
2021
The research has been supported by grant of the Ministry of Education and Science of the Republic of Kazakhstan AP09562784. The authors (D. Sergeyev) acknowledges the provision of SCAPS-1D software by Prof. Marc Burgelman. The research of A.I. Popov has been supported by the Institute of Solid State Physics (ISSP), University of Latvia (UL). ISSP UL as the Centre of Excellence is supported through the Framework Program for Euro-pean Universities Union Horizon 2020, H2020-WIDESPREAD-01–2016–2017-TeamingPhase2 under Grant Agreement No. 739508, CAMART2 project.
High efficiency resonance ionization of palladium with Ti:sapphire lasers
2016
This work presents the development and testing of highly efficient excitation schemes for resonance ionization of palladium. To achieve the highest ionization efficiencies, a high-power, high repetition rate Ti:sapphire laser system was used and 2-step, 3-step and 4-step schemes were investigated and compared. Starting from different excited steps, the frequencies of the final ionization steps were tuned across the full accessible spectral range of the laser system, revealing several autoionizing Rydberg series, which converge towards the energetically higher lying state of the Pd+ ion ground state configuration. Through proper choice of these excitation steps, we developed a highly efficie…
Framework for complex quantum state generation and coherent control based on on-chip frequency combs
2018
Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.
Defect-induced blue luminescence of hexagonal boron nitride
2016
Abstract Native defect-induced photoluminescence around 400 nm (blue luminescence - BL) was studied in hBN materials with different size and various origins. The following spectral characterizations were used: spectra of luminescence and its excitation, luminescence dependence on temperature, luminescence kinetics, optically stimulated luminescence and infrared absorption. It was found, that the BL is characteristic for all these materials, which were studied. The BL forms a wide, asymmetric and phonon-assisted emission band at 380 nm. This luminescence can be excited either through the exciton processes, or with light from two defect-induced excitation bands at 340 nm and 265 nm. It was fo…