Search results for "Stein"

showing 10 items of 1448 documents

Homocysteine concentration in coronary artery disease: Influence of three common single nucleotide polymorphisms.

2017

Whether single nucleotide polymorphisms (SNPs) of homocysteine metabolism enzymes influence the rate of cardiovascular (CV) events in coronary artery disease (CAD) patients remains controversial.In this analysis, 1126 subjects from the AtheroGene study with CAD and 332 control subjects without known CAD were included. The following SNPs were investigated: methylentetrahydrofolate reductase (MTHFR-C667T), methionin synthetase (MS-D919G), and cystathionin beta synthetase (CBS-I278T). The endpoint was the combination of cardiovascular death, stroke, and non-fatal myocardial infarction (N = 286). The median follow-up time was 6.4 years. Kaplan-Meier curve analysis showed an increasing event rat…

0301 basic medicineMaleTime FactorsHomocysteineEndocrinology Diabetes and MetabolismMyocardial InfarctionMedicine (miscellaneous)Coronary Artery DiseaseKaplan-Meier Estimate030204 cardiovascular system & hematologyReductaseGastroenterology5-Methyltetrahydrofolate-Homocysteine S-MethyltransferaseCoronary artery diseasechemistry.chemical_compound0302 clinical medicineGene FrequencyRisk FactorsMyocardial infarctionStrokeHomocysteineGeneticsNutrition and DieteticsbiologyHomozygoteMiddle AgedStrokePhenotypeArea Under CurveDisease ProgressionFemaleCardiology and Cardiovascular Medicinemedicine.medical_specialtyHeterozygoteCystathionine beta-SynthaseSingle-nucleotide polymorphismPolymorphism Single NucleotideRisk Assessment03 medical and health sciencesPredictive Value of TestsInternal medicinemedicineHumansGenetic Predisposition to DiseaseGenetic Association StudiesMethylenetetrahydrofolate Reductase (NADPH2)AgedProportional Hazards ModelsChi-Square DistributionCurve analysismedicine.disease030104 developmental biologychemistryROC CurveMethylenetetrahydrofolate reductaseCase-Control Studiesbiology.proteinBiomarkersNutrition, metabolism, and cardiovascular diseases : NMCD
researchProduct

Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

2018

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei (T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors (Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys–SOH) during crystallization. The P-glycoprotein efflux ratio was mea…

0301 basic medicineMaleTrypanosoma brucei rhodesienseSwineCathepsin LLactams MacrocyclicTrypanosoma bruceiCysteine Proteinase InhibitorsLigands01 natural sciencesCell LineCathepsin L03 medical and health sciencesStructure-Activity RelationshipIn vivoparasitic diseasesDrug DiscoveryHydrolaseAnimalsHumansIC50Binding SitesbiologyMolecular Structure010405 organic chemistryChemistryDrug RepositioningTrypanosoma brucei rhodesiensebiology.organism_classificationCysteine proteaseMolecular biologyTrypanocidal Agents0104 chemical sciencesRatsMice Inbred C57BLCysteine Endopeptidases030104 developmental biologyBlood-Brain Barrierbiology.proteinMolecular MedicineEffluxJournal of medicinal chemistry
researchProduct

Total colonic aganglionosis and cleft palate in a newborn with Janus-cysteine 618 mutation of RET proto-oncogene: a case report.

2020

Abstract Background Hirschsprung disease, the most important congenital colonic dysmotility in children results from neural crest migration, differentiation, proliferation, or apoptosis defects where the rearranged during transfection (RET)-Protooncogene pathway has a central role. Although palatal and retinal anomalies in the context of chromosomopathies and some mono−/oligogenic syndromes are reported associated with Hirschsprung disease the role of inactivating RET mutations in these cases is not clarified. Case presentation We report on a dysmorphic newborn with cleft palate and palatal synechia, who showed intestinal obstruction after 24 h of life. Transient ileostomy and surgical biop…

0301 basic medicineMalecongenital hereditary and neonatal diseases and abnormalitiesPathologymedicine.medical_specialtyCongenital digestive system abnormalitieNeurocristopathyCase ReportContext (language use)RET proto-oncogenemedicine.disease_causeProto-Oncogene MasCongenital digestive system abnormalities03 medical and health sciences0302 clinical medicineGermline mutationCase-reportmedicineCarcinomaHumansCysteineHirschsprung DiseaseTotal colonic aganglionosisLoss functionGerm-Line MutationJanus KinasesNeurocristopathyMutationbusiness.industryProto-Oncogene Proteins c-retlcsh:RJ1-570Infant Newbornlcsh:Pediatricsmedicine.diseaseCleft Palate030104 developmental biologyItaly030220 oncology & carcinogenesisREarranged during TransfectionbusinessItalian journal of pediatrics
researchProduct

Altered Semmes–Weinstein monofilament test results are associated with oxidative stress markers in type 2 diabetic subjects

2017

Abstract Background Different lines of evidence suggest that oxidative stress (OS) is implicated in the pathogenesis of diabetic neuropathy. The Semmes–Weinstein monofilament (SWM) test is an efficient tool for evaluating diabetic polyneuropathy and diabetic foot. In this study, we analyzed the association between OS markers and altered SWM test results in type 2 diabetes (T2DM) patients. Methods Seventy T2DM patients were studied and 34 showed altered SWM results. The clinical and biochemical parameters were determined using standardized methods. Levels of oxidized glutathione (GSSG) and malondialdehyde (MDA) were measured in circulating mononuclear cells using high-performance liquid chro…

0301 basic medicineMalemedicine.medical_specialtyGlutathione systemDiabetic neuropathySemmes–Weinstein monofilament testlcsh:MedicineType 2 diabetesmedicine.disease_causeGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicineMalondialdehydeType 2 diabetes mellitusmedicinePeripheral polyneuropathyHumansAgedAnthropometryGlutathione Disulfidebusiness.industryResearchlcsh:RGeneral Medicinemedicine.diseaseMalondialdehydeDiabetic footHealthy VolunteersOxidative Stress030104 developmental biologyEndocrinologychemistryDiabetes Mellitus Type 2Glutathione disulfideFemaleHemoglobinbusinessPolyneuropathy030217 neurology & neurosurgeryOxidative stressBiomarkersJournal of Translational Medicine
researchProduct

On the role of cystatin C in cancer progression

2018

Cystatin C (Cyst C) is an endogenous inhibitor of lysosomal cysteine proteinases, which has been shown to play a role in several normal and pathological processes. Interestingly, a growing number of experimental and clinical studies suggest that this inhibitor also appears to be implicated in the malignant progression of various human tumors. However, the role of Cyst C in malignant diseases is still controversial as these studies have highlighted that this protein may function either as tumor suppressor or tumor promoter. The specific mechanisms underlying these opposing effects at present remain murky and are the subject of many current investigations. On the other hand, a complete knowle…

0301 basic medicineMetastasiCysteine proteinaseGeneral Biochemistry Genetics and Molecular BiologyCysteine Proteinase Inhibitorslaw.inventionMetastasisCathepsin03 medical and health sciences0302 clinical medicinelawNeoplasmsMedicineAnimalsHumansCystGeneral Pharmacology Toxicology and PharmaceuticsNeoplasm MetastasisCystatin CCancerCathepsinbiologybusiness.industryCancerProteinase inhibitorsGeneral Medicinemedicine.disease030104 developmental biologyCystatin C030220 oncology & carcinogenesisCancer researchbiology.proteinDisease ProgressionSettore BIO/14 - FarmacologiaSuppressorbusinessFunction (biology)
researchProduct

Molecular Mechanism of Inhibition of DNA Methylation by Zebularine

2017

In this work, we have analyzed the molecular mechanism of inhibition of a C5-DNA methyltransferase by zebularine using classical and QM/MM simulations. We found that the reaction proceeds with the addition of an unprotonated cysteine to the C6 position of the ring followed by methyl transfer to the C5 position. However, while the first step is reversible and presents a moderate free-energy barrier, the second step presents a large free-energy barrier, preventing the formation of the methylated complex. This mechanistic proposal agrees with recent experimental observations that point to the formation of a reversible covalent complex between DNA containing zebularine and methyltransferases. T…

0301 basic medicineMethyltransferaseStereochemistrySubstrate (chemistry)General ChemistryCatalysisQM/MM03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryZebularineCovalent bondDNACytosineCysteineACS Catalysis
researchProduct

Comparison of the artus Epstein-Barr virus (EBV) PCR kit and the Abbott RealTime EBV assay for measuring plasma EBV DNA loads in allogeneic stem cell…

2017

The ability of the artus Epstein-Barr virus (EBV) PCR kit and the Abbott RealTime EBV PCR assay to detect and quantify plasma EBV DNAemia was compared. The agreement between these assays was 95.8%. The EBV DNA loads measured by the two assays significantly correlated (P=< 0.0001).

0301 basic medicineMicrobiology (medical)AdultEpstein-Barr Virus InfectionsHerpesvirus 4 Human030106 microbiologyPcr assayBiologymedicine.disease_causeVirus03 medical and health sciencesPlasmahemic and lymphatic diseasesmedicineHumansTransplantation HomologousGeneral MedicineViral LoadEpstein–Barr virusVirologyTransplant Recipients030104 developmental biologyInfectious DiseasesReal-time polymerase chain reactionMolecular Diagnostic TechniquesDNA ViralStem cellStem Cell TransplantationDiagnostic microbiology and infectious disease
researchProduct

Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta

2020

The present work was designed to identify and characterize novel antimicrobial peptides (AMPs) from Charybdis pancration (Steinh.) Speta, previously named Urginea maritima, is a Mediterranean plant, well-known for its biological properties in traditional medicine. Polypeptide-enriched extracts from different parts of the plant (roots, leaves and bulb), never studied before, were tested against two relevant pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. With the aim of identifying novel natural AMPs, peptide fraction displaying antimicrobial activity (the bulb) that showed minimum inhibitory concentration (MICs) equal to 30 &micro

0301 basic medicineMicrobiology (medical)Charybdis030106 microbiologyAntimicrobial peptides) SpetaSettore BIO/05 - ZoologiatemporinPeptidemedicine.disease_causeSettore BIO/19 - Microbiologia GeneraleBiochemistryMicrobiologyMicrobiologyantibiotic resistant strains03 medical and health sciencesMinimum inhibitory concentrationAntibiotic resistancemedicinePharmacology (medical)high-resolution mass spectrometryGeneral Pharmacology Toxicology and Pharmaceuticsplant defensinschemistry.chemical_classificationbiologyPseudomonas aeruginosaantimicrobial peptides from plantCharybdis pancration (Steinh.) SpetaSettore BIO/02 - Botanica Sistematicalcsh:RM1-950temporinsbiology.organism_classificationAntimicrobialplant defensinmolecular dynamicslcsh:Therapeutics. Pharmacology030104 developmental biologyInfectious DiseaseschemistryStaphylococcus aureusCharybdis pancration (Steinhantimicrobial peptides from plants<i>Charybdis pancration</i> (Steinh.) Spetaantibiotic resistant strainAntibiotics
researchProduct

Chemoselective Dual Labeling of Native and Recombinant Proteins

2017

The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups. In order to ensure broader applicability of the functionalization strategy, a novel, short peptide sequence that introduces a disulfide bridge was designed and site-selective dual labeling in the presenc…

0301 basic medicineModels MolecularBiomedical EngineeringPharmaceutical ScienceBioengineering010402 general chemistry01 natural scienceslaw.inventionCell LineMaleimides03 medical and health scienceschemistry.chemical_compoundMiceBacterial ProteinslawAnimalsHumansReactivity (chemistry)CysteineSulfhydryl CompoundsSulfonesMaleimidePeptide sequenceDual labelingPharmacologychemistry.chemical_classificationStaining and LabelingCommunicationOrganic ChemistryDisulfide bondProteinsCombinatorial chemistryRecombinant Proteins0104 chemical sciencesAllyl CompoundsLuminescent Proteins030104 developmental biologychemistryThiolRecombinant DNASurface modificationInterleukin-2PeptidesBiotechnologyBioconjugate Chemistry
researchProduct

Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

2017

Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabl…

0301 basic medicineModels MolecularDouble bondStereochemistryPhenylalanineCysteine Proteinase InhibitorsBiochemistryCathepsin CCathepsin CSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationship0302 clinical medicineDehydroalanineMoietyAnimalsSulfhydryl CompoundsBinding sitechemistry.chemical_classificationDipeptideAlanineBinding SitesDehydropeptidesDiastereomerEnzyme inhibitorsGeneral MedicineDipeptidesKinetics030104 developmental biologychemistryThiol addition030220 oncology & carcinogenesisCattleBiochimie
researchProduct