Search results for "Stem cell"

showing 10 items of 2354 documents

ATR expands embryonic stem cell fate potential in response to replication stress

2020

Fondazione Italiana per la Ricerca sul Cancro FIRC 18112 Sina Atashpaz.Fondazione Umberto Veronesi Sina Atashpaz Associazione Italiana per la Ricerca sul Cancro AIRC 5xmille METAMECH program Vincenzo Costanzo Giovanni Armenise-Harvard Foundation Vincenzo Costanzo European Research Council Consolidator grant 614541 Vincenzo Costanzo Associazione Italiana per la Ricerca sul Cancro Fellowship 23961 Negar ArghavanifarDanish Cancer Society KBVU-2014 Andres Joaquin Lopez-Contreras Danish Council for Independent Research Sapere Aude, DFF Starting Grant 2014 Andres Joaquin Lopez-Contreras European Research Council ERC-2015-STG-679068 Andres Joaquin Lopez-Contreras Danish National Research Foundatio…

0301 basic medicineEndogenyAtaxia Telangiectasia Mutated ProteinsMice0302 clinical medicineTandem Mass SpectrometryTranscription (biology)GENE ATRcell biologyCloning MolecularBiology (General)Cells Cultured0303 health sciencesGeneral NeuroscienceQRTotipotentCell DifferentiationEmbryoGeneral MedicineCell biologyMedicinebiological phenomena cell phenomena and immunityResearch ArticleQH301-705.5replication stressDNA damageScienceSettore MED/08 - Anatomia PatologicaBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAnimalsRNA MessengerGeneEmbryonic Stem CellsmouseCell Proliferation030304 developmental biologyMessenger RNAGeneral Immunology and MicrobiologyChimeraSequence Analysis RNAEmbryogenesisTELOMERE ELONGATIONEPIGENETIC RESTRICTIONembryonic stem cellEmbryonic stem cellATR030104 developmental biologyGene Expression RegulationDNA-DAMAGECheckpoint Kinase 1GENOMIC STABILITY030217 neurology & neurosurgeryChromatography LiquidDNA DamageeLife
researchProduct

Melatonin Treatment Alters Biological and Immunomodulatory Properties of Human Dental Pulp Mesenchymal Stem Cells via Augmented Transforming Growth F…

2020

Melatonin is an endogenous neurohormone with well-reported anti-inflammatory and antioxidant properties, but the direct biological and immunomodulatory effects of melatonin on human dental pulp stem cells (hDPSCs) has not been fully elucidated. The aim of this study was to evaluate the influence of melatonin on the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs.To address the melatonin biological effects on hDPSCs, the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs after melatonin treat…

0301 basic medicineEndogenyPharmacologyMelatonin03 medical and health sciences0302 clinical medicineOsteogenesisTransforming Growth Factor betaDental pulp stem cellsmedicineHumansViability assayTransforming growth factor-beta secretionGeneral DentistryCells CulturedDental PulpCell ProliferationMelatoninbiologyChemistryStem CellsMesenchymal stem cellCell migrationCell DifferentiationMesenchymal Stem Cells030206 dentistryTransforming growth factor beta030104 developmental biologybiology.proteinhormones hormone substitutes and hormone antagonistsmedicine.drugJournal of endodontics
researchProduct

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

2017

Nanotechnology-based drug design offers new possibilities for the use of nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was examined via fluore…

0301 basic medicineEndosomeGeneral Physics and Astronomyquantum dots02 engineering and technologylcsh:Chemical technologyEndocytosislcsh:TechnologyFull Research PaperFlow cytometry03 medical and health sciencesmedicineNanotechnologyendocytosislcsh:TP1-1185General Materials ScienceCD90stem cell differentiationViability assayMicropinocytosisElectrical and Electronic Engineeringlcsh:Sciencemesenchymal stem cellsmedicine.diagnostic_testlcsh:TChemistryMesenchymal stem cell021001 nanoscience & nanotechnologylcsh:QC1-999Cell biologyNanoscience030104 developmental biologyTargeted drug deliverylcsh:Q0210 nano-technologylcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

2016

The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 sig…

0301 basic medicineEndothelial protein C receptorGeneral NeuroscienceBiologyThrombomodulinCXCR4General Biochemistry Genetics and Molecular BiologyCell biology03 medical and health sciencesHaematopoiesis030104 developmental biologymedicine.anatomical_structureHistory and Philosophy of Sciencecardiovascular systemmedicineBone marrowProgenitor cellStem cellSignal transductionAnnals of the New York Academy of Sciences
researchProduct

Paraoxonase-2 regulates coagulation activation through endothelial tissue factor

2017

Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide ev…

0301 basic medicineEndotheliumImmunologyInflammation030204 cardiovascular system & hematologymedicine.disease_causeModels BiologicalBiochemistryThromboplastinMice03 medical and health sciencesTissue factor0302 clinical medicinemedicineAnimalsHumansThromboplastinPlateletEndothelial dysfunctionBlood CoagulationInflammationMice KnockoutAryldialkylphosphataseChemistryEndothelial CellsCell BiologyHematologymedicine.diseaseEndothelial stem cellOxidative Stress030104 developmental biologymedicine.anatomical_structureCancer researchCytokinesInflammation Mediatorsmedicine.symptomOxidation-ReductionOxidative stressBlood
researchProduct

Stem cell therapy. Old challenges and new solutions

2020

Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chro…

0301 basic medicineEngineeringmedicine.medical_treatmentbio-nanotechnologyregenerative medicineexosomesBio nanotechnologyRegenerative medicinestem cell therapystem cell transplantationEffective solution03 medical and health sciences0302 clinical medicinestem cellsBiological propertyGeneticsmedicine3D system3D systemshumansMolecular Biologybusiness.industry3D systems; bio-nanotechnology; bioprinting; exosomes; regenerative medicine; stem cell therapy; humans; regenerative medicine; stem cell transplantation; stem cellsGeneral MedicineStem-cell therapyExosome030104 developmental biology030220 oncology & carcinogenesisStem cellbusinessStem cell biologyNeurosciencebioprinting
researchProduct

Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation

2017

Ependymal cells (E1/E2) and ciliated B1cells confer a unique pinwheel architecture to the ventricular surface of the subventricular zone (SVZ), and their cilia act as sensors to ventricular changes during development and aging. While several studies showed that forebrain demyelination reactivates the SVZ triggering proliferation, ectopic migration, and oligodendrogenesis for myelin repair, the potential role of ciliated cells in this process was not investigated. Using conventional and lateral wall whole mount preparation immunohistochemistry in addition to electron microscopy in a forebrain-targeted model of experimental autoimmune encephalomyelitis (tEAE), we show an early decrease in num…

0301 basic medicineEpendymal CellCell divisionCellSubventricular zoneBiologyCell biologyB-1 cell03 medical and health sciencesCellular and Molecular NeuroscienceMyelin030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemNeurologymedicineMotile ciliumStem cellNeuroscience030217 neurology & neurosurgeryGlia
researchProduct

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

2016

Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method …

0301 basic medicineEpendymal CellNeurogenesisGeneral Chemical EngineeringGenetic VectorsStem cellsBiologyTransfectionGeneral Biochemistry Genetics and Molecular BiologySubgranular zoneMice03 medical and health sciencesSubependymal zoneNeural Stem CellsEpendymal cellEpendymaLateral VentriclesDevelopmental biologyNichemedicineSubependymal zoneAnimalsNeurogeneticsGeneral Immunology and MicrobiologyLateral ventricleGeneral NeuroscienceLentivirusNeurogenesisGene Transfer TechniquesBrainNeural stem cellCell biology030104 developmental biologymedicine.anatomical_structureVentricular-subventricular zonenervous systemNeural stem cellIssue 108NeurogenèticaStem cellCèl·lules mareDevelopmental biology; Ependymal cell; Issue 108; Lateral ventricle; Lentivirus; Neural stem cell; Neurogenesis; Niche; Subependymal zone; Ventricular-subventricular zone; Animals; Brain; Ependyma; Lateral Ventricles; Lentivirus; Mice; Neural Stem Cells; Transfection; Gene Transfer Techniques; Genetic VectorsDevelopmental biologyNeuroscienceAdult stem cellJournal of Visualized Experiments
researchProduct

Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain

2016

In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the …

0301 basic medicineEpendymal CellbiologyGeneral NeuroscienceDentate gyrusNeurogenesisHippocampal formationbiology.organism_classificationNeural stem cell03 medical and health sciencesLateral ventricles030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemmedicineEpendymaZebrafishNeuroscience030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM

2019

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several synthetic and real datasets generated with different single-cell techno…

0301 basic medicineEpigenomicsMultifactor Dimensionality ReductionComputer scienceGeneral Physics and Astronomy02 engineering and technologyOmics dataMyoblastsMiceSingle-cell analysisGATA1 Transcription FactorMyeloid CellsLymphocyteslcsh:ScienceData processingMultidisciplinaryQGene Expression Regulation DevelopmentalRNA sequencingCell DifferentiationGenomics021001 nanoscience & nanotechnologyData processingDNA-Binding ProteinsInterferon Regulatory FactorsSingle-Cell Analysis0210 nano-technologyAlgorithmsOmics technologiesSignal TransductionLineage differentiationScienceComputational biologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesErythroid CellsAnimalsCell LineageGeneral Chemistrydevelopmental trajectories visualizationHematopoietic Stem CellsPipeline (software)Visualization030104 developmental biologyTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESCellular heterogeneitySingle cell analysilcsh:QGene expressionTranscriptomeTranscription FactorsNature Communications
researchProduct