Search results for "Stencil"

showing 3 items of 3 documents

2019

Abstract. The flow of fluids through porous media such as groundwater flow or magma migration is a key process in geological sciences. Flow is controlled by the permeability of the rock; thus, an accurate determination and prediction of its value is of crucial importance. For this reason, permeability has been measured across different scales. As laboratory measurements exhibit a range of limitations, the numerical prediction of permeability at conditions where laboratory experiments struggle has become an important method to complement laboratory approaches. At high resolutions, this prediction becomes computationally very expensive, which makes it crucial to develop methods that maximize …

010504 meteorology & atmospheric sciencesStratigraphyFinite differencePaleontologySoil ScienceReynolds numberGeologyMechanics010502 geochemistry & geophysics01 natural sciencesStencilNon-Newtonian fluidPhysics::GeophysicsPhysics::Fluid DynamicsPermeability (earth sciences)symbols.namesakeGeophysicsGeochemistry and PetrologyFluid dynamicsNewtonian fluidsymbolsPorous mediumGeology0105 earth and related environmental sciencesEarth-Surface ProcessesSolid Earth
researchProduct

Programmable proximity aperture lithography with MeV ion beams

2008

A novel MeV ion beam programmable proximity aperture lithography system has been constructed at the Accelerator Laboratory of the University of Jyvaskyla, Finland. This facility can be used to fabricate three dimensional microstructures in thick (<100μm) polymer resist such as polymethylmethacrylate. In this method, MeV ion beams from the 1.7 MV pelletron and K130 cyclotron accelerators are collimated to a beam spot of rectangular shape. This shape is defined by a computer-controlled aperture made of a pair of L-shaped Ta blades which are in close proximity to the sample to minimize the penumbra broadening. Here the authors report on development of the system, the controlling software, the …

Materials scienceIon beambusiness.industryCondensed Matter PhysicsIon beam lithographyFocused ion beamPelletronOpticsPhysics::Accelerator PhysicsStencil lithographyX-ray lithographyElectrical and Electronic EngineeringbusinessNext-generation lithographyMaskless lithographyJournal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures
researchProduct

An order-adaptive compact approximation Taylor method for systems of conservation laws

2021

Abstract We present a new family of high-order shock-capturing finite difference numerical methods for systems of conservation laws. These methods, called Adaptive Compact Approximation Taylor (ACAT) schemes, use centered ( 2 p + 1 ) -point stencils, where p may take values in { 1 , 2 , … , P } according to a new family of smoothness indicators in the stencils. The methods are based on a combination of a robust first order scheme and the Compact Approximate Taylor (CAT) methods of order 2p-order, p = 1 , 2 , … , P so that they are first order accurate near discontinuities and have order 2p in smooth regions, where ( 2 p + 1 ) is the size of the biggest stencil in which large gradients are n…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)010103 numerical & computational mathematicsAdaptive high-order methods01 natural sciencesStencilsymbols.namesakeTaylor seriesFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsConservation lawsFinite differencesNumerical AnalysisConservation lawSmoothnessApplied MathematicsNumerical analysisFinite differenceApproximate Taylor Lax-Wendroff methodsNumerical Analysis (math.NA)Computer Science ApplicationsEuler equations010101 applied mathematicsComputational MathematicsNonlinear systemModeling and Simulationsymbols
researchProduct