Search results for "Stochastic dynamics"
showing 10 items of 21 documents
Noise-induced behavioral change driven by transient chaos
2022
We study behavioral change in the context of a stochastic, non-linear consumption model with preference adjusting, interdependent agents. Changes in long-run consumption behavior are modelled as noise induced transitions between coexisting attractors. A particular case of multistability is considered: two fixed points, whose immediate basins have smooth boundaries, coexist with a periodic attractor, with a fractal immediate basin boundary. If a trajectory leaves an immediate basin, it enters a set of complexly intertwined basins for which final state uncertainty prevails. The standard approach to predicting transition events rooted in the stochastic sensitivity function technique due to Mil…
Complex Systems: an Interdisciplinary Approach
2011
Two main peculiarities characterize complex systems: the nonlinearity and the noisy environmental interaction. The comprehension of noise role in the dynamics of nonlinear systems plays a key aspect in the efforts devoted to understand and model so-called complex systems.
Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model a…
2019
Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a compr…
Random vibration of linear and nonlinear structural systems with singular matrices: A frequency domain approach
2017
Abstract A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based f…
Enhancement of stability in systems with metastable states
2007
The investigation of noise‐induced phenomena in far from equilibrium systems is one of the approach used to understand the behaviour of physical and biological complex systems. Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The enhancement of the life‐time of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) Ising model (ii) Josephson junction; (iii) stochastic FitzHugh‐Nagumo model; (iv) a population dynamics model, and (v) …
An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems
2015
The recently developed approximate Wiener path integral (WPI) technique for determining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems has proven to be reliable and significantly more efficient than a Monte Carlo simulation (MCS) treatment of the problem for low-dimensional systems. Nevertheless, the standard implementation of the WPI technique can be computationally cumbersome for relatively high-dimensional MDOF systems. In this paper, a novel WPI technique formulation/implementation is developed by combining the “localization” capabilities of the WPI solution framework with an appropriately chosen expansion for approximating the system response PDF…
Stochastic response of a fractional vibroimpact system
2017
Abstract The paper proposes a method to investigate the stochastic dynamics of a vibroimpact single-degree-of-freedom fractional system under a Gaussian white noise input. It is assumed that the system has a hard type impact against a one-sided motionless barrier, which is located at the system’s equilibrium position; furthermore, the system under study is endowed with an element modeled with fractional derivative. The proposed method is based on stochastic averaging technique and overcome the particular difficulty due to the presence of fractional derivative of an absolute value function; particularly an analytical expression for the system’s mean squared response amplitude is presented an…
Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach
2008
The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-tr…
An approximate technique for determining in closed-form the response transition probability density function of diverse nonlinear/hysteretic oscillat…
2019
An approximate analytical technique is developed for determining, in closed form, the transition probability density function (PDF) of a general class of first-order stochastic differential equations (SDEs) with nonlinearities both in the drift and in the diffusion coefficients. Specifically, first, resorting to the Wiener path integral most probable path approximation and utilizing the Cauchy–Schwarz inequality yields a closed-form expression for the system response PDF, at practically zero computational cost. Next, the accuracy of this approximation is enhanced by proposing a more general PDF form with additional parameters to be determined. This is done by relying on the associated Fokke…