Search results for "Stokes shift"
showing 6 items of 16 documents
Fluorescent styrylpyrylium probes for the imaging of mitochondria in live cells
2021
Eight styrylpyrylium tetrafluoroborate salts have been synthesized and fully optically characterized by UV-vis absorption and fluorescence steady-state/time-resolved spectroscopies. The new dyes exhibit strong emission bands with yellow–orange colours, depending on the substituents present in the structure. Notably, the Stokes shift recorded for some of them exceeds 100 nm, a very valuable feature for biological imaging. Four of them have been assayed as biological imaging agents by confocal laser scanning microscopy (CLSM) in the human hepatoma cell line Hep3B. It has been found that all the compounds efficiently stain intracellular structures which have been identified as mitochondria thr…
Resonant Rayleigh scattering in quantum well structures
1996
Abstract We report continuous wave experiments on resonant Rayleigh scattering (RRS) performed on high quality GaAs AlGaAs quantum well structures. The simultaneous measurement of the resonant Rayleigh scattering and of the photoluminescence excitation (PLE) allows us to resolve very small differences between the two spectra. We show that, even in very good samples, there is a small but detectable Stokes shift of the RRS profile with respect to the PLE. It is also found that the RRS profile has a smaller linewidth and is sensitive to bound exciton transitions which are not detectable in the PLE. We compare our data with previous findings and discuss possible origins of the Stokes shift.
Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift
2013
The understanding and control of the dynamics of hybrid modes consisting of strongly coupled surface plasmon polaritons and molecular excitations of dye molecules is of great timely interest, as it allows one to tailor interactions between optical signals as needed for active all-optical devices. Here we utilize dye molecules with an especially large Stokes shift to demonstrate the absence of mutual scatterings among the strongly coupled hybrid modes. We employ a quantum mechanical three-level model and show that the hybrid modes decay via dephasing and internal relaxation of the molecules to a fluorescing state of the dye, which can be used as a measure for the decay. Our results provide e…
Short hydrogen bonds enhance non-aromatic protein-related fluorescence
2020
AbstractFluorescence in biological systems is usually associated with the presence of aromatic groups. Here, we show that specific hydrogen bonding networks can significantly affect fluorescence employing a combined experimental and computational approach. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared to L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby signific…
Straightforward access to water-soluble unsymmetrical sulfoxanthene dyes: application to the preparation of far-red fluorescent dyes with large stoke…
2014
An efficient synthesis of water-soluble unsymmetrical sulforhodamine/sulforhodol fluorophores containing a single julolidine fragment is presented. Owing to their valuable spectral properties in aqueous buffers, these dyes, especially those bearing a free aniline or phenol moiety, are valuable components of fluorogenic probes for a variety of biosensing applications. A further extension of this synthetic methodology to unusual phenols, namely 7-N,N-dialkylamino-4-hydroxy coumarins has enabled us to provide a new family water-soluble dyes of large Stokes’ shift with far-red spectral features.
Dynamics of Strongly Coupled Modes between Surface Plasmon Polaritons and Photoactive Molecules: The Effect of the Stokes Shift
2017
We have investigated the dynamics of strongly coupled modes of surface plasmon polaritons (SPPs) and fluorescent molecules by analyzing their scattered emission polarization. While the scattered emission of SPPs is purely transverse magnetic (TM) polarized, the strong coupling with molecules induces transverse electric (TE) polarized emission via the partial molecular nature of the formed SPP–molecule polariton mode. We observe that the TM/TE ratio of the polariton emission follows the contribution of the molecular excited states in this hybrid mode. By using several types of molecules, we observe that, in addition to the coupling strength, which determines the contribution of the molecular…