Search results for "Structure-based"

showing 10 items of 12 documents

Conf-VLKA: A structure-based revisitation of the Virtual Lock-and-key Approach

2016

In a previous work, we developed the in house Virtual Lock-and-Key Approach (VLKA) in order to evaluate target assignment starting from molecular descriptors calculated on known inhibitors used as an information source. This protocol was able to predict the correct biological target for the whole dataset with a good degree of reliability (80%), and proved experimentally, which was useful for the target fishing of unknown compounds. In this paper, we tried to remodel the previous in house developed VLKA in a more sophisticated one in order to evaluate the influence of 3D conformation of ligands on the accuracy of the prediction. We applied the same previous algorithm of scoring and ranking b…

0301 basic medicineMaterials Chemistry2506 Metals and AlloysInhibitorStructure-basedComputer scienceProtein ConformationProtein Data Bank (RCSB PDB)Molecular ConformationTarget fishingMolecular Dynamics Simulationcomputer.software_genreLigands01 natural sciencesDockingVlka03 medical and health sciencesMolecular descriptorMaterials ChemistryHumansPhysical and Theoretical ChemistryCluster analysisDatabases ProteinSimulationSpectroscopyBinding SitesProteinscomputer.file_formatDescriptorProtein Data BankComputer Graphics and Computer-Aided Design0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyProtein–ligand dockingBiological targetDocking (molecular)Biological targetStructure basedLigand-basedData miningcomputerAlgorithmsSoftwareProtein Binding
researchProduct

Evaluating the stability of pharmacophore features using molecular dynamics simulations.

2016

Abstract Molecular dynamics simulations of twelve protein—ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in …

0301 basic medicineProtein FlexibilityProtein ConformationBiophysicsStability (learning theory)Molecular Dynamics SimulationLigands01 natural sciencesBiochemistryLigandScoutSet (abstract data type)03 medical and health sciencesMolecular dynamicsComputational chemistryFeature (machine learning)Pharmacophore ModelingSensitivity (control systems)Molecular BiologyBinding Sites010405 organic chemistryChemistryStructure-based Pharmacophore ModelingMolecular DynamicProteinsHydrogen BondingCell Biology0104 chemical sciences030104 developmental biologyRankingModels ChemicalDrug DesignPharmacophoreBiological systemProtein BindingBiochemical and biophysical research communications
researchProduct

Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers.

2019

Introduction: The vast majority of breast cancers (BC) are estrogen receptor positive (ER+). The most effective treatments to fight this BC type rely on estrogen deprivation therapy, by inhibiting the aromatase enzyme, which performs estrogen biosynthesis, or on blocking the estrogens signaling path via modulating/degrading the estrogen's specific nuclear receptor (estrogen receptor-?, ER?). While being effective at early disease stage, patients treated with aromatase inhibitors (AIs) may acquire resistance and often relapse after prolonged therapies. Areas covered: In this compendium, after an overview of the historical development of the AIs currently in clinical use, and of the computati…

Antineoplastic Agents Hormonalmedicine.drug_classCYP450sEstrogen receptorallostery; aromatase inhibitors; Breast cancer; CYP450s; ligand-based and structure-based drug design; molecular dynamics; virtual screeningBreast NeoplasmsMolecular Dynamics SimulationBioinformatics03 medical and health sciencesBreast cancer0302 clinical medicineBreast cancerDrug DiscoverymedicineEndocrine systemHumansAromataseSurvival rate030304 developmental biologyCause of deathNeoplasm Staging0303 health sciencesallosterybiologybusiness.industryAromatase Inhibitorsvirtual screeningmedicine.diseaseligand-based and structure-based drug designmolecular dynamicsSurvival RateNuclear receptorEstrogenDrug Resistance Neoplasm030220 oncology & carcinogenesisDrug Designbiology.proteinFemalebusinessExpert opinion on drug discovery
researchProduct

A Practical Perspective: The Effect of Ligand Conformers on the Negative Image-Based Screening.

2019

Negative image-based (NIB) screening is a rigid molecular docking methodology that can also be employed in docking rescoring. During the NIB screening, a negative image is generated based on the target protein’s ligand-binding cavity by inverting its shape and electrostatics. The resulting NIB model is a drug-like entity or pseudo-ligand that is compared directly against ligand 3D conformers, as is done with a template compound in the ligand-based screening. This cavity-based rigid docking has been demonstrated to work with genuine drug targets in both benchmark testing and drug candidate/lead discovery. Firstly, the study explores in-depth the applicability of different ligand 3D conformer…

Binding SitesCyclooxygenase 2 Inhibitorsstructure-based drug discoveryrigid dockingmolecular dockingnegative image-based (NIB) screeningvirtual screeningArticlenegative image-based rescoring (R-NiB)cyclooxygenase-2 (COX-2)Molecular Docking SimulationCyclooxygenase 2Drug DiscoveryHumansdocking rescoringProtein BindingInternational journal of molecular sciences
researchProduct

Exploring the SARS-CoV-2 Proteome in the Search of Potential Inhibitors via Structure-based Pharmacophore Modeling/Docking Approach

2020

To date, SARS-CoV-2 infectious disease, named COVID-19 by the World Health Organization (WHO) in February 2020, has caused millions of infections and hundreds of thousands of deaths. Despite the scientific community efforts, there are currently no approved therapies for treating this coronavirus infection. The process of new drug development is expensive and time-consuming, so that drug repurposing may be the ideal solution to fight the pandemic. In this paper, we selected the proteins encoded by SARS-CoV-2 and using homology modeling we identified the high-quality model of proteins. A structure-based pharmacophore modeling study was performed to identify the pharmacophore features for each…

General Computer ScienceComputer scienceComputational biologylcsh:QA75.5-76.95Theoretical Computer Science03 medical and health sciences0302 clinical medicineHomology modelingMM-GBSA030304 developmental biology0303 health sciencesVirtual screeningpharmacophoreSARS-CoV-2Applied MathematicsCOVID-19computational chemistryCOVID-19 SARS-CoV-2 computational chemistry structure-based pharmacophore docking MM-GBSADrug repositioningstructure-basedDrug developmentInfectious disease (medical specialty)Docking (molecular)030220 oncology & carcinogenesisModeling and Simulationdockinglcsh:Electronic computers. Computer sciencePharmacophoreDrugBankComputation
researchProduct

An Experimental Toolbox for Structure‐Based Hit Discovery for P. aeruginosa FabF, a Promising Target for Antibiotics

2021

Abstract FabF (3‐oxoacyl‐[acyl‐carrier‐protein] synthase 2), which catalyses the rate limiting condensation reaction in the fatty acid synthesis II pathway, is an attractive target for new antibiotics. Here, we focus on FabF from P. aeruginosa (PaFabF) as antibiotics against this pathogen are urgently needed. To facilitate exploration of this target we have set up an experimental toolbox consisting of binding assays using bio‐layer interferometry (BLI) as well as saturation transfer difference (STD) and WaterLOGSY NMR in addition to robust conditions for structure determination. The suitability of the toolbox to support structure‐based design of FabF inhibitors was demonstrated through the …

Models MolecularBio-layer interferometrymedicine.drug_classAntibioticsMicrobial Sensitivity TestsCrystallography X-RayLigandsBiochemistryantibiotics3-Oxoacyl-(Acyl-Carrier-Protein) SynthaseDrug Discoverymedicinebio-layer interferometryGeneral Pharmacology Toxicology and PharmaceuticsEnzyme InhibitorsPharmacologyligand-based NMRVirtual screeningBiological ProductsFull PaperMolecular StructureChemistryOrganic ChemistryLimitingFull Papersvirtual screeningCombinatorial chemistrystructure-based designAnti-Bacterial AgentsSaturation transferPseudomonas aeruginosaMolecular MedicineStructure basedChemmedchem
researchProduct

A Multivariate Analysis of HIV-1 Protease Inhibitors and Resistance Induced by Mutation

2005

This paper describes the use of the multivariate statistical procedure principal component analysis as a tool to explore the inhibitory activity of classes of protease inhibitors (PIs) against HIV-1 viruses (wild type and more-frequent single mutants, V82A, V82F, and I84V) and against protease enzymes. The analysis of correlations between biological activity and molecular descriptors or similarity indexes allowed a reliable classification of the 51 derivatives considered in this study. The best results were obtained in the case of the I84V mutant for which a high number of predictions was achieved. On this basis, this statistical approach is proposed as a reliable method for the prediction …

STRUCTURE-BASED DESIGNMultivariate analysisGeneral Chemical Engineeringmedicine.medical_treatmentMutantComputational biologyLibrary and Information SciencesModels BiologicalStructure-Activity RelationshipHIV-1 proteaseMolecular descriptorDrug Resistance ViralmedicineHIV Protease InhibitorBIOLOGICAL EVALUATIONGeneticschemistry.chemical_classificationProteasebiologyWild typeBiological activityANTIVIRAL ACTIVITYGeneral ChemistryHIV Protease InhibitorsGeneral MedicineD-AMINO ACIDSIN-VITROComputer Science ApplicationsORALLY BIOAVAILABLE INHIBITOREnzymechemistryRAY CRYSTAL-STRUCTUREMultivariate AnalysisMutationHUMAN-IMMUNODEFICIENCY-VIRUSHIV-1biology.proteinTYPE-1 PROTEASEQUANTITATIVE STRUCTURESoftware
researchProduct

MOLECULAR DYNAMICS - MULTIPLE RECEPTOR CONFORMATIONS APPROACH TO ENHANCE STRUCTURE-BASED VIRTUAL SCREENING ON PPAR-alpha RECEPTOR

2016

STRUCTURE-BASEDPPAR-alpha RECEPTOR.MULTIPLE RECEPTOR CONFORMATIONSMOLECULAR DYNAMICSVIRTUAL SCREENING
researchProduct

In Silico Design, Synthesis and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity

2022

Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Com…

SulfonamidesRPharmaceutical ScienceAnticancer compounds; Arylsulfonamide; Docking; Molecular dynamics; Pharmacophore modeling; Structure-based drug design; Sulfonamides; Telomerase inhibitorsMolecular dynamicsSettore CHIM/08 - Chimica FarmaceuticaArticleDockingRS1-441Anticancer compoundsTelomerase inhibitorsPharmacy and materia medicaDrug DiscoveryArylsulfonamideMedicineMolecular Medicinesulfonamides; arylsulfonamide; anticancer compounds; telomerase inhibitors; structure-based drug design; pharmacophore modeling; docking; molecular dynamicsStructure-based drug designPharmacophore modeling
researchProduct

Correlation between cell line chemosensitivity and protein expression pattern as new approach for the design of targeted anticancer small molecules

2022

BACKGROUND AND RATIONALE: Over the past few decades, several databases with a significant amount of biological data related to cancer cells and anticancer agents (e.g.: National Cancer Institute database, NCI; Cancer Cell Line Encyclopedia, CCLE; Genomic and Drug Sensitivity in Cancer portal, GDSC) have been developed. The huge amount of heterogeneous biological data extractable from these databanks (among all, drug response and protein expression) provides a real foundation for predictive cancer chemogenomics, which aims to investigate the relationships between genomic traits and the response of cancer cells to drug treatment with the aim to identify novel therapeutic molecules and targets…

antiproliferative activitychemosensitivityCdc25structure-basedligand-basedanticancer drugtargeted therapyprotein expressionDRUDITNCI60Settore CHIM/08 - Chimica Farmaceutica
researchProduct