Search results for "Sulfurtransferases"

showing 5 items of 5 documents

Urmylation and tRNA thiolation functions of ubiquitin-like Uba4·Urm1 systems are conserved from yeast to man

2015

AbstractThe ubiquitin-like protein Urm1 from budding yeast and its E1-like activator Uba4 have dual roles in protein urmylation and tRNA thiolation pathways. To study whether these are conserved among eukaryotes, we used gene shuffles to replace the yeast proteins by their human counterparts, hURM1 and hUBA4/MOCS3. As judged from biochemical and genetical assays, hURM1 and hUBA4 are functional in yeast, albeit at reduced efficiencies. They mediate urmylation of the peroxiredoxin Ahp1, a known urmylation target in yeast, and support tRNA thiolation. Similar to hUBA4, yeast Uba4 itself is modified by Urm1 and hURM1 suggesting target overlap between eukaryal urmylation pathways. In sum, our st…

Saccharomyces cerevisiae ProteinsUba4 (hUBA4/MOCS3)Saccharomyces cerevisiaeBiophysicstRNA thiolationSaccharomyces cerevisiaeBiochemistryUbiquitin-like urmylationRNA TransferUbiquitinStructural BiologyAnticodonGeneticsHumansUbiquitinsMolecular BiologyProtein urmylationGeneUrm1 (hURM1)Conserved SequenceSequence Homology Amino AcidbiologyActivator (genetics)TRNA thiolationCell Biologybiology.organism_classificationNucleotidyltransferasesYeastBiochemistrySulfurtransferasesbiology.proteinPeroxiredoxinHeLa CellsFEBS Letters
researchProduct

Drug-metabolizing enzyme activities in freshly isolated oval cells and in an established oval cell line from carcinogen-fed rats

1994

The activities of several different phase I and phase II drug-metabolizing enzymes were measured in freshly isolated oval cells from rats fed a choline-deficient/DL-ethionine-supplemented diet for 6 weeks and also in vitro in the established oval cell line OC/CDE 6. No cytochrome P450 was spectrophotometrically measurable in both preparations and two cytochrome P450-dependent monoxygenase activities, aminopyrine N-demethylase and ethoxyresorufin O-deethylase, could not be detected in the oval cells of both sources. However, cytosolic glutathione transferase, microsomal epoxide hydrolase and UDP-glucuronosyltransferase activities were clearly measurable in oval cells. Similar enzyme activiti…

Health Toxicology and MutagenesisBiologyToxicologyCytochrome P-450 Enzyme SystemAnimalsCytotoxic T cellRNA MessengerGlucuronosyltransferaseCells CulturedGlutathione TransferaseEpoxide HydrolasesConfluencyCytochrome P450Cell BiologyRats Inbred F344In vitroDietRatsLiverBiochemistryCell cultureSulfurtransferasesMicrosomal epoxide hydrolaseCarcinogensbiology.proteinMicrosomeDrug metabolismCell Biology and Toxicology
researchProduct

Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome

2019

The deficiency of the molybdenum cofactor (Moco) is an autosomal recessive disease, which leads to the loss of activity of all molybdoenzymes in humans with sulfite oxidase being the essential protein. Moco deficiency generally results in death in early childhood. Moco is a sulfur-containing cofactor synthesized in the cytosol with the sulfur being provided by a sulfur relay system composed of the L-cysteine desulfurase NFS1, MOCS3, and MOCS2A. Human MOCS3 is a dual-function protein that was shown to play an important role in Moco biosynthesis and in the mcm(5)s(2) U thio modifications of nucleosides in cytosolic tRNAs for Lys, Gln, and Glu. In this study, we constructed a homozygous MOCS3 …

inorganic chemicalsCoenzymesBiochemistry03 medical and health scienceschemistry.chemical_compoundRNA Transferddc:570Sulfite oxidaseMetalloproteinsHumansnatural sciencesInstitut für Biochemie und BiologieAconitate HydrataseCentrosome0303 health sciencesPteridinesSulfite Oxidase030302 biochemistry & molecular biologyNucleotidyltransferasesIsocitrate DehydrogenaseCell biologyCarbon-Sulfur LyasesHEK293 CellschemistryCentrosomeSulfurtransferasesbacteriaCRISPR-Cas SystemsMolybdenum cofactorMolybdenum CofactorsHeLa CellsBiochemistry
researchProduct

Thiosulfate Reduction in Salmonella enterica Is Driven by the Proton Motive Force

2012

ABSTRACT Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (Δ E °′ = −328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined …

ThiosulfatesSulfurtransferaseElectron donorNaphtholsBiologyPhotochemistryMicrobiologyGene Expression Regulation Enzymologicchemistry.chemical_compoundElectron transferSulfiteEscherichia coliFormateMolecular BiologyExergonic reactionThiosulfateTerpenesChemiosmosisProton-Motive ForceSalmonella entericaGene Expression Regulation BacterialArticleschemistryBiochemistrySulfurtransferasesThermodynamicsProtonsOxidation-ReductionJournal of Bacteriology
researchProduct

The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18

2020

ABSTRACTThe biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins, however, containing both CD and Rhd domains in specific bacterial genera suggests a general interaction between both proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to…

Protein familyArabidopsisSulfurtransferaseRhodaneseBiochemistry03 medical and health scienceschemistry.chemical_compoundCytosolProtein DomainsArabidopsis thalianaCysteineMolecular Biology030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsCysteine desulfurase030302 biochemistry & molecular biologyCell Biologybiology.organism_classificationFusion proteinThiosulfate SulfurtransferaseCarbon-Sulfur LyasesBiochemistrychemistrySulfurtransferasesMolybdenum cofactorSulfurCysteine
researchProduct