Search results for "Superconducting magnet"

showing 3 items of 33 documents

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

Conceptual Design and Modeling of Fast Discharge Unit for Quench Protection of Superconducting Toroidal Field Magnets of DTT

2020

The paper deals with the modelling and simulation of a Fast Discharge Unit (FDU) for quench protection of the Toroidal Field (TF) magnets of the Divertor Tokamak Test, an experimental facility under design and construction in Frascati (Italy). The FDU is a safety key component that protects the superconducting magnets when a quench is detected through the fast extraction of the energy stored in superconducting magnets by adding in the TF magnets a dump (or discharge) resistor. In the paper, two different configurations of dump resistors (fixed and variable respectively) have been analysed and discussed. As a first result, it is possible to underline that the configuration with variable dump…

TokamakMaterials scienceNuclear engineeringFDUSuperconducting magnet01 natural sciences010305 fluids & plasmaslaw.inventionhybrid circuit breakerConceptual designPhysics::Plasma Physicslaw0103 physical sciencesdump resisto010306 general physicsSuperconductivityToroidal fieldDivertorquench protectionSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaMagnetPhysics::Accelerator Physicssuperconducting magnetsResistorQPC2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)
researchProduct

Conceptual Design and Modeling of the Toroidal Field Coils Circuit of DTT

2020

Italian Divertor Tokamak Test (DTT) facility is part of the general European programme on the fusion research. Its specific role is to cover the gap on the power exhaust for the future DEMOstration power plant (DEMO). This tokamak will be built and installed in Italy at Frascati ENEA laboratories. The paper describes the Toroidal Field (TF) coils circuit powered by a TF power supply that feeds in series 18 toroidal superconducting magnets and the development of three software models in order to validate the adopted technical solutions in term of maximum voltage and maximum current stress on each power device/component, due to both the operating and fault conditions, and across TF coils.

TokamakToroidPower stationComputer scienceNuclear engineeringDivertorToroidal Field Superconducting MagnetsCrowbar ProtectionSuperconducting magnetFault (power engineering)Converter Transformer01 natural sciences010305 fluids & plasmaslaw.inventionSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaAC/DC ConverterConceptual designlaw0103 physical sciences010306 general physicsVoltage
researchProduct