Search results for "Superfluidity"

showing 10 items of 110 documents

Superfluidity of fermionic pairs in a harmonic trap. Comparative studies: Local Density Approximation and Bogoliubov-de Gennes solutions

2020

Abstract Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover, this trap also introduces non-homogeneity in the superconducting order parameter. There are, among other approaches, two methods which can be used to describe the system of two-component mixtures loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent Bogoliubov–de Gennes equations. Here, we compare results obtained within these two methods. We conclude that the results can be distinguishable only in the case of a small value of the pairing int…

Condensed Matter::Quantum GasesPhysicsSuperfluiditySuperconductivityOptical latticeLattice (order)Quantum mechanicsPairingGeneral Physics and AstronomyTrappingLocal-density approximationJournal of Physics Communications
researchProduct

Pairing in a three-component Fermi gas

2006

We consider pairing in a three-component gas of degenerate fermions. In particular, we solve the finite temperature mean-field theory of an interacting gas for a system where both interaction strengths and fermion masses can be unequal. At zero temperature we find a a possibility of a quantum phase transition between states associated with pairing between different pairs of fermions. On the other hand, finite temperature behavior of the three-component system reveals some qualitative differences from the two-component gas: for a range of parameters it is possible to have two different critical temperatures. The lower one corresponds to a transition between different pairing channels, while …

Condensed Matter::Quantum GasesQuantum phase transitionPhysicsPhase transitionCondensed matter physicsCondensed Matter - SuperconductivityDegenerate energy levelsFOS: Physical sciencesFermion01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)SuperfluidityMean field theoryPairingQuantum mechanics0103 physical sciences010306 general physicsFermi gasPhysical Review A
researchProduct

Beyond the dilute Bose gas

2006

Abstract We discuss problems of three dimensional Bose gases in interaction but non-dilute. We then use the theory of a “weakly interacting” Bose gas recently analyzed as an attempt to obtain further insights into non-dilute systems. In particular, we develop the theory with additional remarks, discussions and a slight modification. The article concludes with a much more detailed analysis of the Bose condensate depletion, as well as a study of the two-fluid model of Tisza and Landau: the coexistence of normal and superfluid liquids at sufficiently low temperatures. In fact, even if it is based on one debatable hypothesis, this non-dilute gas qualitatively leads, up to Landau's “ T 4 law”, t…

Condensed Matter::Quantum GasesStatistics and ProbabilityPhysicsCondensed matter physicsBose gasLiquid heliumCondensationchemistry.chemical_elementCondensed Matter Physicslaw.inventionSuperfluiditychemistrylawQuantum mechanicsThermalBose–Einstein condensateHeliumPhysica A: Statistical Mechanics and its Applications
researchProduct

Supersolid Behavior of Light

2008

We will show how light can form stationary structures on dielectric periodic media such that their dynamics present simultaneous features of spatial long range order and superfluidity. This phenomenon is normally referred to as supersolidity.

Condensed Matter::Quantum GasesSuperfluidityPhysicsSupersolidCondensed matter physicsCondensed Matter::OtherNonlinear opticsSelf-focusingDielectricPhotonic crystalFrontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing
researchProduct

Spatial dependence of the pairing field calculated with bare and induced interactions

2009

The interaction induced by the exchange of low-lying surface vibrations between pairs of orbitals close to the Fermi surface provides an important contribution to pairing correlations in superfluid nuclei. We study the spatial dependence of the pairing field obtained adding the bare and induced interaction in 120Sn.

Condensed Matter::Quantum GasesSurface (mathematics)SuperfluidityPhysicsHistoryAtomic orbitalCondensed matter physicsField (physics)PairingFermi surfaceSpatial dependenceComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Observation of a superfluid component within solid helium

2011

We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface. peerReviewed

Condensed Matter::Quantum Gasessupersolid 4HeCondensed Matter::OtherRestricted geometriesRajatut geometriatsupranestnosyys 4He kiteessäCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsuprakide 4HeSuperfluidity in solid 4He
researchProduct

Small-amplitude collective modes of a finite-size unitary Fermi gas in deformed traps

2019

We have investigated collective breathing modes of a unitary Fermi gas in deformed harmonic traps. The ground state is studied by the Superfluid Local Density Approximation (SLDA) and small-amplitude collective modes are studied by the iterative Quasiparticle Random Phase Approximation (QRPA). The results illustrate the evolutions of collective modes of a small system in traps from spherical to elongated or pancake deformations. For small spherical systems, the influences of different SLDA parameters are significant, and, in particular, a large pairing strength can shift up the oscillation frequency of collective mode. The transition currents from QRPA show that the compressional flow patte…

EXCITATIONSCondensed Matter::Quantum GasesPhysicsCondensed matter physics010308 nuclear & particles physicsOscillationfermi gasestiheysfunktionaaliteoriaFOS: Physical sciences114 Physical sciences01 natural sciencesultracold gasesSuperfluidityQuantum Gases (cond-mat.quant-gas)random phase approximationPairing0103 physical sciencesQuasiparticleLocal-density approximationCondensed Matter - Quantum Gases010306 general physicsGround stateFermi gasRandom phase approximationdensity functional theoryPhysical Review A
researchProduct

Quantum field theory of dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism and beyond mean-field corrections

2002

We consider a dilute homogeneous mixture of bosons and spin-polarized fermions at zero temperature. We first construct the formal scheme for carrying out systematic perturbation theory in terms of single particle Green's functions. We introduce a new relevant object, the renormalized boson-fermion T-matrix which we determine to second order in the boson-fermion s-wave scattering length. We also discuss how to incorporate the usual boson-boson T-matrix in mean-field approximation to obtain the total ground state properties of the system. The next order term beyond mean-field stems from the boson-fermion interaction and is proportional to $a_{\scriptsize BF}k_{\scriptsize F}$. The total groun…

Einstein condensationDegeneracyHigh Energy Physics::LatticeCondensed Matter (cond-mat)FOS: Physical sciencesHE-3-HE-4 mixturesCondensed MatterKinetic energylaw.inventionlawQuantum mechanicsQuantum field theoryBosonPhysicsCondensed Matter::Quantum GasesInstitut für Physik und AstronomieScattering lengthInteraction energyFermionCollisions.Atomic and Molecular Physics and OpticsAtomic gasMean field theorySuperfluidityQuantum electrodynamicsBose–Einstein condensate
researchProduct

Strongly interacting Fermi gases with density imbalance

2005

We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.

FOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesElectromagnetic radiation010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)SuperfluidityCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsSpectroscopyPhysicsCondensed Matter::Quantum GasesStrongly Correlated Electrons (cond-mat.str-el)UnitarityCondensed matter physicsCondensed Matter::OtherCondensed Matter - SuperconductivityFermionCondensed Matter - Other Condensed MatterQuantum electrodynamicsFermi gasOther Condensed Matter (cond-mat.other)Dimensionless quantityFermi Gamma-ray Space Telescope
researchProduct

Pairing gap and in-gap excitations in trapped fermionic superfluids

2004

We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of RF(or laser)-excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, i.e. in-gap excitations. The results support the conclusion that a superfluid, where pairing is a many-body effect, was observed in recent experiments on RF spectroscopy of the pairing gap.

FOS: Physical sciencesRoton01 natural sciences010305 fluids & plasmasSuperfluiditySuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsSuperfluid state0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic Physics010306 general physicsFeshbach resonanceSpectroscopyCondensed Matter - Statistical MechanicsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter::OtherCondensed Matter - SuperconductivityPairingPseudogapQuantum Physics (quant-ph)Fermi Gamma-ray Space Telescope
researchProduct