Search results for "Superfluidity"

showing 10 items of 110 documents

Phenomenological description of counterflow superfluid turbulence in rotating containers

2004

In this paper a simple equation for the vortex line density describing some of the most relevant observed effects in counterflow superfluid turbulence in ${}^{4}\mathrm{He}$ in the presence of rotation is proposed. This model is based on a generalization of Vinen's equation which incorporates as additional quantity the angular velocity \ensuremath{\Omega}.

PhysicsCondensed Matter::OtherGeneralizationTurbulenceAngular velocityCondensed Matter PhysicsRotationOmegaElectronic Optical and Magnetic MaterialsVortexSuperfluidityClassical mechanicsLine (formation)Mathematical physics
researchProduct

Alternative Vinen equation and its extension to rotating counterflow superfluid turbulence

2007

Two alternative Vinen's evolution equations for the vortex line density L in counterflow superfluid turbulence, are physically admissible and lead to analogous results in steady states. In Phys. Rev. B, 69, 094513 (2004) the most used of them was generalized to counterflow superfluid turbulence in rotating containers. Here, the analogous generalization for the alternative Vinen's equation is proposed. Both generalized Vinen's equations are compared with the experimental results, not only in steady-states but also in some unsteady situations. From this analysis follows that the solutions of the alternative Vinen's equation tend significantly faster to the corresponding final steady state val…

PhysicsCondensed Matter::OtherTurbulenceGeneralizationFOS: Physical sciencesTourbillonCondensed Matter PhysicsRotationSuperfluid turbulenceElectronic Optical and Magnetic MaterialsVortexCondensed Matter - Other Condensed MatterSuperfluidityVortex tangleClassical mechanicsRotating counterflow turbulenceLine (geometry)Electrical and Electronic EngineeringSettore MAT/07 - Fisica MatematicaSuperfluid helium-4Other Condensed Matter (cond-mat.other)Physica B: Condensed Matter
researchProduct

Exploiting Coherence in Nonlinear Spin-Superfluid Transport

2017

We show how the interference between superfluid spin currents can endow spin circuits with coherent logic functionality. While the hydrodynamic aspects of the linear-response collective spin transport obviate interference features, we focus on the nonlinear regime, where the critical supercurrent is sensitive to the phase accumulated by the condensate in a loop geometry. We propose to control this phase by electrical gating, tuning the spin-condensate coherence length. The nonlinear aspects of the spin superfluidity thus naturally lend themselves to the construction of logic gates, uniquely exploiting the coherence of collective spin currents. Vice versa, this functionality can be used to r…

PhysicsCondensed Matter::Quantum GasesCondensed Matter - Mesoscale and Nanoscale PhysicsSupercurrentGeneral Physics and AstronomyFOS: Physical sciencesSpin engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCoherence lengthSuperfluidityNonlinear systemQuantum mechanicsLogic gate0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyCoherence (physics)Electronic circuit
researchProduct

Scissors modes of two-component degenerate gases: Bose-Bose and Bose-Fermi mixtures

2003

We investigate the scissors modes in binary mixtures of degenerate dilute quantum gases, for both Bose-Bose and Bose-Fermi mixtures. For the latter we consider both the superfluid and normal hydrodynamic and collisionless regimes. We analyze the dependence of the frequencies of the scissors modes and their character as a function of the Bose-Fermi coupling and the trap geometry. We show that the scissors mode can reveal a clear trace of the hydrodynamic behavior of the Fermi gas.

PhysicsCondensed Matter::Quantum GasesCondensed matter physicsComponent (thermodynamics)Condensed Matter::OtherDegenerate energy levelsFOS: Physical sciencesFermionCondensed Matter - Soft Condensed MatterAtomic and Molecular Physics and Opticslaw.inventionSuperfluidityCoupling (physics)lawSoft Condensed Matter (cond-mat.soft)Fermi gasBose–Einstein condensateFermi Gamma-ray Space Telescope
researchProduct

Signatures of superfluidity for Feshbach-resonant Fermi gases

2004

We consider atomic Fermi gases where Feshbach resonances can be used to continuously tune the system from weak to strong interaction regime, allowing to scan the whole BCS-BEC crossover. We show how a probing field transferring atoms out of the superfluid can be used to detect the onset of the superfluid transition in the high-$T_c$ and BCS regimes. The number of transferred atoms, as a function of the energy given by the probing field, peaks at the gap energy. The shape of the peak is asymmetric due to the single particle excitation gap. Since the excitation gap includes also a pseudogap contribution, the asymmetry alone is not a signature of superfluidity. Incoherent nature of the non-con…

PhysicsCondensed Matter::Quantum GasesCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter::Othermedia_common.quotation_subjectGeneral Physics and AstronomyFOS: Physical sciencesBCS theoryAsymmetrylaw.inventionSuperfluidityCondensed Matter - Strongly Correlated ElectronslawPseudogapFeshbach resonanceFermi gasExcitationBose–Einstein condensatemedia_common
researchProduct

Fermion pairing with spin-density imbalance in an optical lattice

2006

We consider pairing in a two-component atomic Fermi gas, in a three-dimensional optical lattice, when the components have unequal densities, i.e. the gas is polarized. We show that a superfluid where the translational symmetry is broken by a finite Cooper pair momentum, namely an FFLO-type state, minimizes the Helmholtz free energy of the system. We demonstrate that such a state is clearly visible in the observable momentum distribution of the atoms, and analyze the dependence of the order parameter and the momentum distribution on the filling fraction and the interaction strength.

PhysicsCondensed Matter::Quantum GasesOptical latticeCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFermion01 natural sciences114 Physical sciences010305 fluids & plasmasMomentumSuperfluiditySuperconductivity (cond-mat.supr-con)PairingCondensed Matter::Superconductivity0103 physical sciencesCooper pair010306 general physicsFermi gasTranslational symmetry
researchProduct

Bloch oscillations in Fermi gases

2003

The possibility of Bloch oscillations for a degenerate and superfluid Fermi gas of atoms in an optical lattice is considered. For a one-component degenerate gas the oscillations are suppressed for high temperatures and band fillings. For a two-component gas the Landau criterion is used for specifying the regime where Bloch oscillations of the superfluid may be observed. We show how the amplitude of Bloch oscillations varies along the BCS-BEC crossover.

PhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherDegenerate energy levelsQuantum oscillationsFOS: Physical sciencesAtomic and Molecular Physics and Opticslaw.inventionSuperfluiditylawQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Bloch oscillationsFermi gasBose–Einstein condensateBloch wave
researchProduct

Sound velocity and dimensional crossover in a superfluid Fermi gas in an optical lattice

2005

We study the sound velocity in cubic and non-cubic three-dimensional optical lattices. We show how the van Hove singularity of the free Fermi gas is smoothened by interactions and eventually vanishes when interactions are strong enough. For non-cubic lattices, we show that the speed of sound (Bogoliubov-Anderson phonon) shows clear signatures of dimensional crossover both in the 1D and 2D limits.

PhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsPhononCondensed Matter - SuperconductivityCrossoverVan Hove singularityFOS: Physical sciences01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)SuperfluiditySingularitySpeed of soundQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physicsFermi gas
researchProduct

Formation of spatial shell structures in the superfluid to Mott insulator transition

2006

International audience; We report on the direct observation of the transition from a compressible superfluid to an incompressible Mott insulator by recording the in-trap density distribution of a Bosonic quantum gas in an optical lattice. Using spatially selective microwave transitions and spin changing collisions, we are able to locally modify the spin state of the trapped quantum gas and record the spatial distribution of lattice sites with different filling factors. As the system evolves from a superfluid to a Mott insulator, we observe the formation of a distinct shell structure, in good agreement with theory.

PhysicsCondensed Matter::Quantum GasesOptical latticeSpin statesCondensed matter physicsMott insulatorFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasMott transitionCondensed Matter - Other Condensed MatterSuperfluidityLattice (order)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsMetal–insulator transition010306 general physicsJaynes–Cummings–Hubbard modelOther Condensed Matter (cond-mat.other)
researchProduct

Co-existence and shell structures of several superfluids in trapped three-component Fermi mixtures

2006

We study the properties of a trapped interacting three component Fermi gas. We assume that one of the components can have a different mass from the other two. We calculate the different phases of the three component mixture and find a rich variety of different phases corresponding to different pairing channels, and simple ways of tuning the system from one phase to another. In particular, we predict co-existence of several different superfluids in the trap, forming a shell structure, and phase transitions from this mixture of superfluids to a single superfluid when the system parameters or temperature is varied. Such shell structures realize superfluids with a non-trivial spatial topology a…

PhysicsCondensed Matter::Quantum GasesPhase transitionCondensed matter physicsComponent (thermodynamics)Condensed Matter - SuperconductivityShell (structure)FOS: Physical sciencesObservable01 natural sciencesMolecular physicsAtomic and Molecular Physics and Optics3. Good health010305 fluids & plasmasSuperfluiditySuperconductivity (cond-mat.supr-con)PairingPhase (matter)0103 physical sciences010306 general physicsFermi gas
researchProduct