Search results for "Supergiant"

showing 10 items of 24 documents

Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

2018

Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the ~4.5 yr time separation between the two observatio…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)Astrophysics01 natural sciencesSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesX-rays: bursts010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsISM: supernova remnants0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMolecular cloudAstronomy and AstrophysicsLight curveX-rays: ISMSupernovaOrders of magnitude (time)Space and Planetary ScienceSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

2006

Massive X-ray binaries are usually classified depending on the properties of the donor star in classical, supergiant and Be X-ray binaries. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_inf) of ~350 km/s, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela …

4U 2206+54X-ray binaryBinary numberFOS: Physical sciencesOutflows Emission-lineOrbital eccentricityAstrophysicsWindsCompact starUNESCO::ASTRONOMÍA Y ASTROFÍSICAVelaAstrophysicsIndividual starsPhysicsAstrophysics (astro-ph)BD +53◦2790BeAstronomy and AstrophysicsOrbital period:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Accretion (astrophysics)X-rays binariesX-rays individualsX-rays binaries ; X-rays individuals ; 4U 2206+54 ; Individual stars ; BD +53◦2790 ; Winds ; Outflows Emission-line ; BeSpace and Planetary ScienceUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaSupergiant:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

IGR J17503–2636: a candidate supergiant fast X-ray transient

2019

IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed …

AccretionX-ray transientAstrophysics::High Energy Astrophysical PhenomenaCyclotronFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionbinaries [x-rays]X-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaMethods: observationalBinaries: closelaw0103 physical sciencesSpectral analysis010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: IGR J17503-2636 [X-rays]010308 nuclear & particles physicsScatteringAstronomy and AstrophysicsStars: neutronAccretion (astrophysics)Neutron starAccretion diskSpace and Planetary ScienceSpectral energy distributionSupergiantAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

2016

We present the results of our monitoring program to study the long-term variability of the Halpha line in high-mass X-ray binaries. We have carried out the most complete optical spectroscopic study of the global properties of high-mass X-ray binaries so far with the analysis of more than 1100 spectra of 20 sources. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods, ii) we show that a Keplerian distribution of the gas particles provides a good descripti…

Be starAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCompact star01 natural sciences0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsMonitoring programAccretion (astrophysics)StarsNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsSupergiantAstrophysics - High Energy Astrophysical PhenomenaEquivalent width
researchProduct

What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and…

2015

We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the P…

ConvectionPhysicsAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicslaw.inventionInterferometryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencelawAstrophysics::Solar and Stellar AstrophysicsRed supergiantChristian ministryAstrophysics::Earth and Planetary AstrophysicsSupergiantHydrostatic equilibriumSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859

2017

Aims. We add four warmer late-type supergiants to our previous spectro-interferometric studies of red giants and supergiants. Methods. We measure the near-continuum angular diameter, derive fundamental parameters, discuss the evolutionary stage, and study extended atmospheric atomic and molecular layers. Results. V766 Cen (=HR 5171 A) is found to be a high-luminosity (log L/L = 5.8 ± 0.4) source of effective temperature 4290 ± 760 K and radius 1490 ± 540 R, located in the Hertzsprung-Russell (HR) diagram close to both the Hayashi limit and Eddington limit; this source is consistent with a 40 M evolutionary track without rotation and current mass 27-36 M. V766 Cen exhibits Na i in emission a…

Hertzsprung–Russell diagramindividual: BM Sco [Stars]FOS: Physical sciencesAstrophysics01 natural sciencesLuminositysymbols.namesake0103 physical sciencesStars: individual: BM ScoRed supergiantStars: mass-lossYellow hypergiantatmospheres [Stars]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Physicsmass-loss [Stars]010308 nuclear & particles physicsAstronomy and AstrophysicsEffective temperatureStars: individual: V766 CenAstrophysics - Solar and Stellar AstrophysicsSupergiantsSpace and Planetary ScienceEddington luminosityTechniques: interferometricsymbolsCircumstellar dustinterferometric [Techniques]individual: V766 Cen [Stars]Stars: atmospheresSupergiant
researchProduct

Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A

2019

(Abridged) We aim at linking the dynamical and radiative properties of the remnant of SN 1987A to the geometrical and physical characteristics of the parent aspherical SN explosion and to the internal structure of its progenitor star. We performed 3D hydrodynamic simulations which describe the long-term evolution of SN 1987A from the onset of the SN to the full-fledged remnant at the age of 50 years, accounting for the pre-SN structure of the progenitor star. The simulations include all physical processes relevant for the complex phases of SN evolution and for the interaction of the SNR with the highly inhomogeneous ambient environment around SN 1987A. From the simulations, we synthesize ob…

High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRedshiftStarsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsEmission spectrumSupergiantAstrophysics - High Energy Astrophysical PhenomenaAnisotropyEjectaSupernova remnant010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Unveiling the nature of six HMXBs through IR spectroscopy

2008

The International Gamma-Ray Astrophyiscs Laboratory (INTEGRAL) is discovering a large number of new hard X-ray sources, many of them being HMXBs. The identification and spectral characterization of their optical/infrared counterparts is a necessary step to undertake detailed study of these systems. In particular, the determination of the spectral type is crucial in the case of the new class of Supergiant Fast X-ray Transients (SFXTs), which show X-ray properties common to other objects. We used the ESO/NTT SofI spectrograph to observe proposed IR counterparts to HMXBs, obtaining Ks medium resolution spectra (R = 1320) with a S/N >= 100. We classified them through comparison with publishe…

InfraredAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)FOS: Physical sciencesInfrared spectroscopyAstrophysicsAstrophysicsStellar classificationSpectral line:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos X [UNESCO]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Fuentes de Rayos XSpectroscopySpectrographAstrophysics::Galaxy AstrophysicsPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsAccretion accretion disksX-rays : binaries; Stars : supergiants; Accretion accretion disks; Infrared : starsSpace and Planetary Sciencestars [Infrared]binaries [X-rays]UNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasSupergiantsupergiants [Stars]:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]Astronomy & Astrophysics
researchProduct

The infancy of core-collapse supernova remnants

2020

We present 3D hydrodynamic simulations of neutrino-driven supernovae (SNe) with the PROMETHEUS-HOTB code, evolving the asymmetrically expanding ejecta from shock breakout until they reach the homologous expansion phase after roughly one year. Our calculations continue the simulations for two red supergiant (RSG) and two blue supergiant (BSG) progenitors by Wongwathanarat et al., who investigated the growth of explosion asymmetries produced by hydrodynamic instabilities during the first second of the explosion and their later fragmentation by Rayleigh-Taylor instabilities. We focus on the late time acceleration and inflation of the ejecta caused by the heating due to the radioactive decay of…

Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaSpherical harmonicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsType II supernova01 natural sciencesAstrophysics - Astrophysics of GalaxiesVolume fillingSupernovaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsRed supergiantSupergiantEjecta010303 astronomy & astrophysicsRadioactive decaySolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics
researchProduct