Search results for "Superheavy element"
showing 10 items of 56 documents
Frontiers of Heavy - Ion Physics and Superheavy Elements
2003
This contribution will focus on three topics of GSI nuclear structure research: super heavy elements, direct mass measurements in the storage ring, and the measurement of spallation cross section in reversed kinematics. The GSI project for an extended synchrotron facility will be outlined.
Quasifission Dynamics in the Formation of Superheavy Elements
2017
The European physical journal / Web of Conferences 163, 00023 - (2017). doi:10.1051/epjconf/201716300023
Production and properties towards the island of stability
2016
The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and inbeam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. peerReviewed
Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements
2016
With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…
Calculation of atomic properties of superheavy elements Z=110–112 and their ions
2020
We calculate the spectra, electric dipole transition rates, and isotope shifts of the superheavy elements Ds ($Z=110$), Rg ($Z=111$), and Cn ($Z=112$) and their ions. These calculations were performed using a recently developed, efficient version of the ab intio configuration-interaction combined with perturbation theory to treat distant effects. The successive ionization potentials of the three elements are also calculated and compared to lighter analogous elements.
Exploiting transport properties for the detection of optical pumping in heavy ions
2020
We present a kinetic model for optical pumping in Lu$^+$ and Lr$^+$ ions as well as a theoretical approach to calculate the transport properties of Lu$^+$ in its ground $^1S_0$ and metastable $^3D_1$ states in helium background gas. Calculations of the initial ion state populations, the field and temperature dependence of the mobilities and diffusion coefficients, and the ion arrival time distributions demonstrate that the ground- and metastable-state ions can be collected and discriminated efficiently under realistic macroscopic conditions.
Sensitive search for near-symmetric and super-asymmetric fusion-fission of the superheavy element Flerovium (Z=114)
2021
Physics letters / B 820, 136601 (2021). doi:10.1016/j.physletb.2021.136601
A new assessment of the alleged link between element 115 and element 117 decay chains
2016
Physics letters 760, 293-296(2016). doi:10.1016/j.physletb.2016.07.008
Evidence of quasifission in the 180Hg composite system formed in the 68Zn + 112Sn reaction
2021
Abstract For the 68Zn + 112Sn reaction the Coulomb parameter Z 1 Z 2 is equal to 1500 that is close to the threshold value for the appearance of quasifission process. It was found that mass-energy distributions of the reaction fragments differ significantly from those obtained in the 36Ar + 144Sm reaction leading to the formation of the same composite system of 180Hg at similar excitation energies of about 50 MeV. In the case of the reaction with 68Zn ions, the mass distribution of fissionlike fragments has a wide two-humped shape with maximum yields at 70 and 110 u for the light and heavy fragments, respectively, instead of 80 and 100 u observed in the fission of 180Hg formed in the 36Ar +…
Direct mass measurements of the heaviest elements with Penning traps
2013
Abstract Penning-trap mass spectrometry (PTMS) is a mature technique to provide atomic masses with highest precision. Applied to radionuclides it enables us to investigate their nuclear structure via binding energies and derived quantities such as nucleon separation energies. Recent progress in slowing down radioactive ion beams in buffer gas cells in combination with advanced ion-manipulation techniques has opened the door to access even the elements above fermium by PTMS. Such elements are produced in complete fusion–evaporation reactions of heavy ions with lead, bismuth, and actinide targets at very low rates. Pioneering high-precision mass measurements of nobelium and lawrencium isotope…