Search results for "Supermassive black hole"

showing 10 items of 43 documents

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

2017

We perform MHD simulations in full GR of uniformly rotating stars that are marginally unstable to collapse. Our simulations model the direct collapse of supermassive stars (SMSs) to seed black holes (BHs) that can grow to become the supermassive BHs at the centers of quasars and AGNs. They also crudely model the collapse of massive Pop III stars to BHs, which could power a fraction of distant, long gamma-ray bursts (GRBs). The initial stellar models we adopt are $\Gamma = 4/3$ polytropes seeded with a dynamically unimportant dipole magnetic field (B field). We treat initial B-field configurations either confined to the stellar interior or extending out from the interior into the stellar ext…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyArticleLuminosity0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supermassive black hole010308 nuclear & particles physicsTorusQuasarRedshiftBlack hole13. Climate actionAstronomiaAstrophysics - High Energy Astrophysical PhenomenaDimensionless quantity
researchProduct

Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles

2018

Collapsing supermassive stars (SMSs) with masses $M \gtrsim 10^{4-6}M_\odot$ have long been speculated to be the seeds that can grow and become supermassive black holes (SMBHs). We previously performed GRMHD simulations of marginally stable magnetized $\Gamma = 4/3$ polytropes uniformly rotating at the mass-shedding limit to model the direct collapse of SMSs. These configurations are supported entirely by thermal radiation pressure and model SMSs with $M \gtrsim 10^{6}M_\odot$. We found that around $90\%$ of the initial stellar mass forms a spinning black hole (BH) surrounded by a massive, hot, magnetized torus, which eventually launches an incipient jet. Here we perform GRMHD simulations o…

AstrofísicaStellar massAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesArticleGeneral Relativity and Quantum Cosmology0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeAccretion (meteorology)HorizonStellar rotationTorusBlack holeStarsAstronomiaAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Modelling accretion disc and stellar wind interactions: the case of Sgr A*

2016

Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural scienceslaw.inventionGravitationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeNumber densityBremsstrahlungAstronomyAstronomy and AstrophysicsAccretion (astrophysics)Stars13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHeliosphereFlareMonthly Notices of the Royal Astronomical Society
researchProduct

Radio Emission from Sgr A*: Pulsar Transits Through the Accretion Disc

2017

Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesElectronAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesBinary pulsarsymbols.namesakePulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySupermassive black holeAstronomyAstronomy and AstrophysicsAccretion (astrophysics)GalaxyLorentz factorSpace and Planetary SciencesymbolsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Black hole lightning due to particle acceleration at subhorizon scales

2015

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here, we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20\% of the gravitational radius of its central black hole. We suggest that the emission is associated …

Black HolesRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsVery High Energy Gamma AstronomyBlack Holes Very High Energy Gamma Astronomy Active Galactic NucleiX-shaped radio galaxysupermassive black hole ; jet formation ; IC 310 ; MAGIC telescopesAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HESupermassive black holeta115MultidisciplinaryPhysicsActive Galactic NucleiAstronomy and AstrophysicsGalaxyIntermediate-mass black holeStellar black holeElectrónicaFísica nuclearddc:500Spin-flipElectricidadAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radius
researchProduct

First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole

2019

We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to av…

Brightness010504 meteorology & atmospheric sciencesgalaxies: jetAstronomyblack hole physicsFOS: Physical sciencesgalaxies: individualtechniques: image processingAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)galaxies: individual: M8701 natural sciencesSynthetic dataGeneral Relativity and Quantum Cosmologygalaxies: individual (M87)0103 physical sciencesimage processing [Techniques]010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesEvent Horizon TelescopePhysicsGround truthSupermassive black holetechniques: high angular resolutionAstronomy and AstrophysicsBlack hole physicsgalaxies: jetsindividual (M87) [Galaxies]Astrophysics - Astrophysics of Galaxiesblack hole physic3. Good healthOrbitInterferometryhigh angular resolution [Techniques]Space and Planetary Sciencetechniques: interferometricAstrophysics of Galaxies (astro-ph.GA)interferometric [Techniques]jets [Galaxies]Deconvolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

2020

All authors: Wielgus, Maciek; Akiyama, Kazunori; Blackburn, Lindy; Chan, Chi-kwan; Dexter, Jason; Doeleman, Sheperd S.; Fish, Vincent L.; Issaoun, Sara; Johnson, Michael D.; Krichbaum, Thomas P.; Lu, Ru-Sen; Pesce, Dominic W.; Wong, George N.; Bower, Geoffrey C.; Broderick, Avery E.; Chael, Andrew; Chatterjee, Koushik; Gammie, Charles F.; Georgiev, Boris; Hada, Kazuhiro Loinard, Laurent; Markoff, Sera; Marrone, Daniel P.; Plambeck, Richard; Weintroub, Jonathan; Dexter, Matthew; MacMahon, David H. E.; Wright, Melvyn; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barausse, Enrico; Barrett, John; Bintley, Dan; Boland, Wilf…

Brightness1663Active galactic nucleus010504 meteorology & atmospheric sciences1346Event horizonAstronomyAstrophysics::High Energy Astrophysical PhenomenaGalaxy accretion disksFOS: Physical sciencesAstrophysicsF500Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences5752033Settore FIS/05 - Astronomia e AstrofisicaSupermassive black holes0103 physical sciencesVery-long-baseline interferometryAstronomy Astrophysics and Cosmology1769010303 astronomy & astrophysicsComputer Vision and Robotics (Autonomous Systems)Astronomy data modelingVery long baseline interferometry0105 earth and related environmental sciences162Black holes; Galaxy accretion disks; Galaxy accretion; Supermassive black holes; Active galactic nuclei; Low-luminosity active galactic nuclei; Very long baseline interferometry; Astronomy data modeling; Radio interferometryEvent Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleiSupermassive black holeBlack holesAstronomy and Astrophysics16Galaxy accretion562Position angleGalaxyLow-luminosity active galactic nucleiMedical Image ProcessingSpace and Planetary ScienceRadio interferometryAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]1859
researchProduct

Detection of Intrinsic Source Structure at ~3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

2018

We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of $\sim$30 $\mu$as ($\sim$3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of $\sim$4-13% of the total flux density. We argue th…

BrightnessAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesContext (language use)General Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologylaw.inventionTelescopelaw0103 physical sciencesVery-long-baseline interferometry010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsSupermassive black hole010308 nuclear & particles physicsGalactic CenterAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesSagittarius A*Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Schwarzschild radius
researchProduct

Black Hole Shadow Drift and Photon Ring Frequency Drift

2021

The apparent angular size of the shadow of a black hole in an expanding Universe is redshift-dependent. Since cosmological redshifts change with time - known as the redshift drift - all redshift-dependent quantities acquire a time-dependence, and a fortiori so do black hole shadows. We find a mathematical description of the black hole shadow drift and show that the amplitude of this effect is of order $10^{-16}$ per day for M87$^{\star}$. While this effect is small, we argue that its non-detection can be used to constrain the accretion rate around supermassive black holes, as well as a novel probe of the equivalence principle. If general relativity is assumed, we infer from the data obtaine…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)General relativityAstrophysics::High Energy Astrophysical PhenomenasuhteellisuusteoriaFrequency driftFOS: Physical sciencesmustat aukotGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicskosmologiaGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyavaruustutkimusfysiikkaEvent Horizon TelescopePhysicsSupermassive black holemaailmankaikkeusOrder (ring theory)Coupling (probability)varjotRedshiftBlack holeavaruusvaloAstrophysics - Cosmology and Nongalactic AstrophysicsThe Open Journal of Astrophysics
researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct