Search results for "Superradiance"

showing 5 items of 15 documents

Quantum synchronization as a local signature of super- and subradiance

2017

We study the relationship between the collective phenomena of super- and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of longstanding coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occu…

PhysicsQuantum PhysicsDephasingFOS: Physical sciencesquantum syncronizationopen quantum systemsDissipation01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmas[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanicsReciprocity (electromagnetism)Qubit0103 physical sciencesDissipative system010306 general physicsGround stateQuantum Physics (quant-ph)superradianceQuantumComputingMilieux_MISCELLANEOUSCoherence (physics)Physical Review A
researchProduct

Collective spontaneous emission of two entangled atoms near an oscillating mirror

2020

We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state and in the presence of an oscillating mirror. We assume that the two atoms, one in the ground state and the other in the excited state, are prepared in a correlated (symmetric or antisymmetric) {\em Bell}-type state. We also suppose that the perfectly reflecting plate oscillates adiabatically, with the field modes satisfying the boundary conditions at the mirror surface at any given instant, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the instantaneous atoms-wall distance. Using time-dependent perturbation …

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciOscillationAntisymmetric relationAtomic Physics (physics.atom-ph)Vacuum stateFOS: Physical sciencesSpontaneous emission Superradiance and Subradiance dynamical external environments01 natural sciences010305 fluids & plasmasPhysics - Atomic PhysicsExcited state0103 physical sciencesRadiative transferSpontaneous emissionBoundary value problemAtomic physics010306 general physicsGround stateQuantum Physics (quant-ph)
researchProduct

Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

2016

Recent numerical relativity simulations within the Einstein--Maxwell--(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordstr\"om black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of the superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these $\textit{unstable}$ solitons leads…

PhysicsRadiation or classical fieldsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsScalar (mathematics)Time evolutionFOS: Physical sciencesSuperradianceGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesInstabilityEinstein–Maxwell spacetimesGeneral Relativity and Quantum CosmologyBlack holeNumerical relativityGeneral Relativity and Quantum CosmologyNumerical studies of black holes and black-hole binaries0103 physical sciencesSpacetimes with fluidsSoliton010306 general physicsRelativity and gravitationClassical black holesBosonMathematical physics
researchProduct

Quantum Nanoplasmonic : from dressed atom picture to superradiance

2019

Controlling quantum emitters (atoms, molecules, quantum dots, etc.), light, and its interactions is a key issue for implementing devices for information optical processing at the quantum level. For example, controlling dynamics of emitters coupled to a high-Q cavity can be achieved through cavity quantum electrodynamics (cQED). Plasmonic structures hybrid system are of growing interest in the quantum control at the nanoscale because of their capability to confine light beyond the diffraction limit. However, its application appears notoriously limited in practical situations due to the intrinsic presence of numerous and lossy modes, which complicates the description and the interpretation of…

Superradiance[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum plasmonicsNanosourcePlasmonique quantiqueCouplage fort et faibleStong and weak coupling[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Superradiant Quantum Phase Transition for an Exactly Solvable Two-Qubit Spin-Boson Model

2023

A spin-boson-like model with two interacting qubits is analysed. The model turns out to be exactly solvable since it is characterized by the exchange symmetry between the two spins. The explicit expressions of eigenstates and eigenenergies make it possible to analytically unveil the occurrence of first-order quantum phase transitions. The latter are physically relevant since they are characterized by abrupt changes in the two-spin subsystem concurrence, in the net spin magnetization and in the mean photon number.

quantum phase transitionsSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicitwo-qubit spin-boson modelexactly solvable modelsGeneral Physics and Astronomyopen quantum systemsentanglementsuperradianceEntropy
researchProduct