Search results for "Supervised Learning"

showing 10 items of 87 documents

Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.

2003

Abstract The command and control of limb movements by the cerebellar and reflex pathways are modeled by means of a circuit whose structure is deduced from functional constraints. One constraint is that fast limb movements must be accurate although they cannot be continuously controlled in closed loop by use of sensory signals. Thus, the pathways which process the motor orders must contain approximate inverse functions of the bio-mechanical functions of the limb and of the muscles. This can be achieved by means of parallel feedback loops, whose pattern turns out to be comparable to the anatomy of the cerebellar pathways. They contain neural networks able to anticipate the motor consequences …

CerebellumEfferentMovementModels NeurologicalSensory systemOlivary NucleusCerebellar CortexArtificial IntelligenceCerebellumNeural PathwaysReflexmedicineSet (psychology)Muscle SkeletalRed NucleusMotor NeuronsNeuronsArtificial neural networkGeneral NeuroscienceSupervised learningExtremitiesBiomechanical Phenomenamedicine.anatomical_structureMemory Short-TermCerebellar NucleiCerebellar cortexReflexNeural Networks ComputerPsychologyNeuroscienceAlgorithmsMuscle ContractionNeuroscience
researchProduct

Panel Summary Perceptual Learning and Discovering

1994

The problem of learning and discovering in perception is addressed and discussed with particular reference to present machine learning paradigms. These paradigms are briefly introduced by S. Gaglio. The subsymbolic approach is addressed by S. Nolfi, and the role of symbolic learning is analysed by F. Esposito. Many of the open problems, that are evidentiated in the course of the panel, show how this is an important field of research that still needs a lot of investigation. In particular, as a result of the whole discussion, it seems that a suitable integration of different approaches must be accurately investigated. It is observed, in fact, that the weakness of the most part of the existing…

Cognitive scienceIdeal (set theory)Computer sciencebusiness.industrymedia_common.quotation_subjectNovelty detectionField (computer science)Symbolic learningPerceptual learningPerceptionIncremental learningUnsupervised learningArtificial intelligencebusinessmedia_common
researchProduct

Combining Supervised and Unsupervised Learning to Discover Emotional Classes

2017

Most previous work in emotion recognition has fixed the available classes in advance, and attempted to classify samples into one of these classes using a supervised learning approach. In this paper, we present preliminary work on combining supervised and unsupervised learning to discover potential latent classes which were not initially considered. To illustrate the potential of this hybrid approach, we have used a Self-Organizing Map (SOM) to organize a large number of Electroencephalogram (EEG) signals from subjects watching videos, according to their internal structure. Results suggest that a more useful labelling scheme could be produced by analysing the resulting topology in relation t…

Computer science050109 social psychologyuser modelling02 engineering and technologyMachine learningcomputer.software_genrePersonalization0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesEmotion recognitionEEGValence (psychology)Affective computingaffective computingclass discoverybusiness.industry05 social sciencesSupervised learningPattern recognitionHybrid approachComputingMethodologies_PATTERNRECOGNITIONUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputercluster analysis
researchProduct

Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging

2017

Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T…

Computer scienceAutomated segmentation; Fuzzy C-Means clustering; Multispectral MR imaging; Prostate cancer; Prostate gland; Unsupervised machine learningMultispectral image02 engineering and technologyautomated segmentation; multispectral MR imaging; prostate gland; prostate cancer; unsupervised Machine Learning; Fuzzy C-Means clustering030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineProstate0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentationautomated segmentationunsupervised Machine LearningCluster analysisSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionimedicine.diagnostic_testbusiness.industryINF/01 - INFORMATICAMagnetic resonance imagingmedicine.diseaseprostate cancerFuzzy C-Means clusteringmultispectral MR imagingmedicine.anatomical_structureUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinessprostate glandInformation SystemsMultispectral segmentation
researchProduct

The impact of sample reduction on PCA-based feature extraction for supervised learning

2006

"The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and classification error in high dimensions. In this paper, different feature extraction (FE) techniques are analyzed as means of dimensionality reduction, and constructive induction with respect to the performance of Naive Bayes classifier. When a data set contains a large number of instances, some sampling approach is applied to address the computational complexity of FE and classification processes. The main goal of this paper is to show the impact of sample reduction on the process of FE for supervised learning. In our study we analyzed the conventional PC…

Computer scienceCovariance matrixbusiness.industryDimensionality reductionFeature extractionSupervised learningNonparametric statisticsSampling (statistics)Pattern recognitionStratified samplingNaive Bayes classifierSample size determinationArtificial intelligencebusinessEigenvalues and eigenvectorsParametric statisticsCurse of dimensionalityProceedings of the 2006 ACM symposium on Applied computing
researchProduct

Different mechanisms underlie implicit visual statistical learning in honey bees and humans

2020

International audience; The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans’ higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees ( Apis mellifera ) encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a comp…

Computer scienceSensory systemEnvironmentENCODEunsupervised learning03 medical and health sciences[SCCO]Cognitive science0302 clinical medicineCognitionMemoryAnimalsHumansLearninginternal representation030304 developmental biologyhuman visual cognition0303 health sciencesMultidisciplinaryRepresentation (systemics)Contrast (statistics)Cognition[SCCO] Cognitive scienceBeesBiological Sciencesinsect cognitionAntecedent (behavioral psychology)Unsupervised learningApis melliferaVisual learning030217 neurology & neurosurgeryCognitive psychology
researchProduct

Class Noise and Supervised Learning in Medical Domains: The Effect of Feature Extraction

2006

Inductive learning systems have been successfully applied in a number of medical domains. It is generally accepted that the highest accuracy results that an inductive learning system can achieve depend on the quality of data and on the appropriate selection of a learning algorithm for the data. In this paper we analyze the effect of class noise on supervised learning in medical domains. We review the related work on learning from noisy data and propose to use feature extraction as a pre-processing step to diminish the effect of class noise on the learning process. Our experiments with 8 medical datasets show that feature extraction indeed helps to deal with class noise. It clearly results i…

Computer sciencebusiness.industryActive learning (machine learning)Supervised learningFeature extractionMulti-task learningPattern recognitionSemi-supervised learningMachine learningcomputer.software_genreNoiseUnsupervised learningArtificial intelligenceInstance-based learningbusinesscomputer19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)
researchProduct

2020

Abstract Background and objective Deep learning approaches are common in image processing, but often rely on supervised learning, which requires a large volume of training images, usually accompanied by hand-crafted labels. As labelled data are often not available, it would be desirable to develop methods that allow such data to be compiled automatically. In this study, we used a Generative Adversarial Network (GAN) to generate realistic B-mode musculoskeletal ultrasound images, and tested the suitability of two automated labelling approaches. Methods We used a model including two GANs each trained to transfer an image from one domain to another. The two inputs were a set of 100 longitudina…

Computer sciencebusiness.industryDeep learningSupervised learningUltrasoundHealth InformaticsPattern recognitionImage processingImage segmentation030218 nuclear medicine & medical imagingComputer Science Applications03 medical and health sciences0302 clinical medicineHistogramMedical imagingEntropy (information theory)Artificial intelligencebusiness030217 neurology & neurosurgerySoftwareComputer Methods and Programs in Biomedicine
researchProduct

Automatic place detection and localization in autonomous robotics

2007

This paper presents an approach for the simultaneous learning and recognition of places applied to autonomous robotics. While noteworthy results have been achieved with respect to off-line training process for appearance-based navigation, novel issues arise when recognition and learning are simultaneous and unsupervised processes. The approach adopted here uses a Gaussian mixture model estimated by a novel incremental MML-EM to model the probability distribution of features extracted by image-preprocessing. A place detector decides which features belong to which place integrating odometric information and a hidden Markov model. Tests demonstrate that the proposed system performs as well as …

Computer sciencebusiness.industryFeature extractionRoboticsComputer Science Applications1707 Computer Vision and Pattern RecognitionMixture modelMachine learningcomputer.software_genreObject detectionsymbols.namesakeControl and Systems EngineeringsymbolsRobotUnsupervised learningArtificial intelligenceHidden Markov modelbusinessGaussian processcomputerSoftware1707
researchProduct

Unsupervised change detection with kernels

2012

In this paper an unsupervised approach to change detection relying on kernels is introduced. Kernel based clustering is used to partition a selected subset of pixels representing both changed and unchanged areas. Once the optimal clustering is obtained the estimated representatives (centroids) of each group are used to assign the class membership to all others pixels composing the multitemporal scenes. Different approaches of considering the multitemporal information are considered with accent on the computation of the difference image directly in the feature spaces. For this purpose a difference kernel approach is successfully adopted. Finally an effective way to cope with the estimation o…

Correctness010504 meteorology & atmospheric sciencesFeature extraction0211 other engineering and technologiesComposite kernels02 engineering and technologykernel parameters01 natural sciencesunsupervised change detectionElectrical and Electronic Engineeringkernel k-meansCluster analysis021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsPixelbusiness.industryPattern recognitionGeotechnical Engineering and Engineering GeologyNonlinear systemKernel (image processing)Unsupervised learningArtificial intelligencebusinessChange detectionIEEE Geoscience and Remote Sensing Letters
researchProduct