Search results for "Surface temperature"

showing 8 items of 218 documents

Seawater carbonate chemistry and fish communities properties off CO2 seeps in Japan

2020

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityCanopy heightCommunity composition and diversityCoverage standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totaltotalCO2 ventReplicatespHPelagosTemperaturedissolvedCanopy height standard deviationCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Fish standard deviationTemperature water standard deviationEarth System Researchstandard deviationField observationgeographic locationsPotentiometric titrationCoverageCalcite saturation stateLocationPotentiometricwaterPartial pressure of carbon dioxideSiteRocky-shore communityBenthosSpecies richness standard deviationSalinity standard deviationOcean Acidification International Coordination Centre OA ICCBiotic Habitat Profile ratioTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Calculated using CO2SYSfungiPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airFishTransectCarbon dioxideRocky shore communityEntire communityBiotic Habitat Profile ratio standard deviationFugacity of carbon dioxide water at sea surface temperature wet airSeasonCoast and continental shelfSpecies richness
researchProduct

Seawater carbonate chemistry and community structure of marine biofouling communities

2018

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments al…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateIdentificationSalinityCommunity composition and diversityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityTime in weeksExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentTemperature water standard deviationEarth System Researchstandard deviationCalcite saturation statewaterPartial pressure of carbon dioxideSiteRocky-shore communityAragonite saturation state standard deviationBenthosSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Shannon Diversity IndexCalculated using CO2SYSIndividualsPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfNumber of species
researchProduct

Seawater carbonate chemistry and percentage cover of macroalgal species at three locations at Vulcano, Italy

2017

Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (delta 13C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. Th…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityCaulerpa proliferaCommunity composition and diversityBicarbonate ion standard deviationUdotea petiolatainorganicAlkalinity total standard deviationAlkalinitySargassum muticumDictyota dichotomaHalopteris scopariaYearsCystoseira brachycarpaExperimentTemperature waterCarbon inorganic dissolvedCystoseira foeniculaceaCaulerpa racemosaCalculated using seacarb after Nisumaa et al 2010Cystoseira foeniculataAragonite saturation stateAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Acetabularia acetabulumJania rubensCarbon dioxide standard deviationEarth System Researchδ13CLipid contentstandard deviationField observationUniform resource locator link to referenceCystoseira crinitaCoverageCalcite saturation stateLocationwaterSiteRocky-shore communityFigureBenthosUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationTypeBicarbonate ionDictyopteris polypodioidesDilophus fasciolaCalculated using seacarb after Nisumaa et al. (2010)SpeciesCystoseira compressaEvent labelCarbonate system computation flagpH standard deviationCarbonate ion standard deviationMassFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airPadina pavonicaSeasonδ13C standard deviationCoast and continental shelfCodium bursaTableCystoseira barbarta
researchProduct

Ocean acidification impairs vermetid reef recruitment

2014

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions…

Ocean Acidification International Coordination Centre (OA-ICC)SalinityTemperateSurvivalAbundance per areainorganicAlkalinityIncubation durationExperimentTemperature waterCarbon inorganic dissolvedNeogoniolithon brassica-floridaCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalSalinity standard errortotalCO2 ventMortality SurvivalpHReproductionTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errorStrontium/Calcium ratiodissolvedMagnesium/Calcium ratioCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorEarth System ResearchRecruitmentMortality/SurvivalFOS: Medical biotechnologygeographic locationsPotentiometric titrationCalcite saturation stateCoveragePotentiometricwaterSiteGrowth MorphologyFigureAlkalinity total standard errorBenthosReplicateMediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionNeogoniolithon brassica floridaLONGITUDETemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalculated using CO2SYSfungiCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesLATITUDEBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airMagnesium Calcium ratioCoast and continental shelfDendropoma petraeumStrontium Calcium ratio
researchProduct

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

2015

Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partial…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateBicarbonate ion standard deviationBottles or small containers/Aquaria (<20 L)Alkalinity total standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedWidthCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenAlkalinity totalBottles or small containers Aquaria 20 LtotalCO2 ventpHRespirationCalcification rate of calcium carbonateTemperatureMonthdissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationRespiration rateEarth System ResearchField observationstandard deviationThicknessCalcification/DissolutionPotentiometric titrationCalcite saturation statePotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyFigureAragonite saturation state standard deviationBenthosMediterranean SeaOcean Acidification International Coordination Centre OA ICCCalcite saturation state standard deviationAnimaliaBicarbonate ionLONGITUDECalculated using seacarb after Nisumaa et al. (2010)SpeciesCyclope neriteaBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSHeightPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonHeight/width ratioTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesCalcification DissolutionLATITUDEHeight width ratioBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfNassarius corniculusoxygenTable
researchProduct

Data from: Behavioural responses of Atlantic cod to sea temperature changes

2016

Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increase…

medicine and health caresea surface temperatureAtlantic codLife SciencesMedicinediel vertical migration
researchProduct

Seawater carbonate chemistry and coralline algal diversity

2021

Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityCommunity composition and diversityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificMarine habitatAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Calcium carbonate standard deviationstandard errorEarth System Researchstandard deviationField observationCalcium carbonateCoverageCalcite saturation stateLocationwaterPartial pressure of carbon dioxideSiteRocky-shore communityCalcium carbonate massAragonite saturation state standard deviationBenthosSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Coverage standard errorfungiEvent labelPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideRocky shore communityEntire communityFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSpecies richness
researchProduct

Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

2015

Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to dat…

Ocean Acidification International Coordination Centre (OA-ICC)SalinityNotocidaris gaussensisBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityCoulometric titrationExperimentCarbon inorganic dissolvedTemperature waterSizeCoelomic fluidCalculated using seacarb after Nisumaa et al 2010CalculatedAragonite saturation stateCtenocidaris giganteaAlkalinity totaltotalAmphipneustes loriolipHTemperaturedissolvedAcid base regulationCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Carbon dioxide standard deviationSterechinus neumayeriEarth System ResearchAporocidaris eltanianaδ13Cstandard deviationField observationPolarStation labelEchinodermataPotentiometric titrationCalcite saturation stateCoelomic fluid alkalinityPotentiometricwaterPartial pressure of carbon dioxideAmphipneustes similisAragonite saturation state standard deviationBenthosDATE TIMEOcean Acidification International Coordination Centre OA ICCSterechinus antarcticusAnimaliaCalcite saturation state standard deviationBicarbonate ionLONGITUDECalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYScarbonEvent labelPartial pressure of carbon dioxide standard deviationCoelomic fluid carbon inorganic dissolvedCarbonate system computation flagAcid-base regulationpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)Amphipneustes rostratusPartial pressure of carbon dioxide water at sea surface temperature wet airDATE/TIMECarbon dioxideDifferenceSingle speciesCoelomic fluid pHLATITUDEFugacity of carbon dioxide water at sea surface temperature wet airAntarcticBenthic animalsCoast and continental shelfAbatus cavernosus
researchProduct