Search results for "Symbiotic"
showing 4 items of 64 documents
Oxygen as a morphogenic factor in sponges: expression of a tyrosinase gene in the sponge Suberites domuncula
2004
Sponges live in a symbiotic relationship with microorganisms, especially bacteria. Here we show, using the demosponge Suberites domuncula as a model, that the sponge expresses the enzyme tyrosinase which synthesizes diphenols from monophenolic compounds. It is assumed that these products serve as carbon source for symbiotic bacteria to grow.
Characterization of the Heme Pocket Structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus
2017
14 Pags.- 6 Figs. This article is part of the Research Topic: Advances in legume research ( http://journal.frontiersin.org/researchtopic/4288/advances-in-legume-research ). Copyright of the Authors through a Creative Commons Attribution License. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.
Theoretical evaluation of 15N isotopic methods for measuring symbiotic nitrogen fixation in the fied
2008
International audience; Isotopic methods for the measurement of symbiotic N2 fixation by leguminous plants in the field rely on the use of differences in 15N enrichment between the N sources potentially available for leguminous crops, soil mineral N and atmospheric N2 . This methodology has been fully documented, especially concerning limitations due to non uniform and non constant distribution of 15N and to the use of a reference plant to measure it. Although all authors recognise the necessity of isotopic methods for giving yield independent and time-integrated estimates of symbiotic fixation, they also agree that these methods intrinsically remain imperfect. Our aim in this chapter is (i…
Data from: The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont
2019
1. The role of biotic interactions in shaping distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host-mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hypersymbionts (symbionts of other symbionts). 2. We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. 3. Ou…