Search results for "Synthetic"

showing 10 items of 723 documents

Strategic Syntheses of Vine and Wine Resveratrol Derivatives to Explore their Effects on Cell Functions and Dysfunctions

2018

Trans-resveratrol, the most well-known polyphenolic stilbenoid, is found in grapes and accordingly in wine and it is considered to be beneficial for human health, especially towards the aging-linked cell alterations by providing numerous biological activities, such as anti-oxidant, antitumoral, antiviral, anti-inflammatory, neuroprotective, and platelet anti-aggregation properties. Although trans-resveratrol is a promising molecule, it cannot be considered as a drug, due to its weak bio-availability and fast metabolism. To overcome these weaknesses, several research teams have undertaken the synthesis of innovative trans-resveratrol derivatives, with the aim to increase its solubility in wa…

0301 basic medicineWineSynthetic derivativesChemistrylcsh:Rlcsh:Medicinefood and beveragesReviewComputational biologybiological targetsResveratrolStilbenoidsubstituents phenyl ringsCell functionsynthesis strategies03 medical and health sciencesHuman healthchemistry.chemical_compound030104 developmental biologyresveratrol derivativesefficacy towards diseasesOrganismDiseases
researchProduct

A systems-wide understanding of photosynthetic acclimation in algae and higher plants

2017

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drasti…

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/BiotechnologyPhysiologyAcclimatizationContext (language use)PhD traininginterdisciplinary trainingPlant Science: Biochemistry biophysics & molecular biology [F05] [Life sciences]BiologyacclimationPhotosynthesisAcclimatizationModels Biologicalmodelling03 medical and health sciencesAlgaeChlorophytaapplication industrielle[SDV.BV]Life Sciences [q-bio]/Vegetal Biologymathematical modellingPhotosynthesis: Biochimie biophysique & biologie moléculaire [F05] [Sciences du vivant]biodiversitymodélisationmicro-alguePhototrophphotosynthetic systemEcologyNon-photochemical quenchingSystems Biologyacclimatation photosynthétiquephotosynthetic optimisationPlanktonPlantsanalyse rétrospectivebiology.organism_classificationindustrial applicationEuropean Training Network030104 developmental biologyAcclimation; European Training Network; PhD training; biodiversity; interdisciplinary training; mathematical modelling; microalgal cultivation; non-photochemical quenching; photosynthetic optimisationPhotosynthetic acclimationadaptation à la lumièremicroalgal cultivationappareil photosynthétiqueBiochemical engineeringnon-photochemical quenching
researchProduct

Modulation of Intracellular O-2 Concentration in Escherichia coli Strains Using Oxygen Consuming Devices

2018

International audience; The use of cell factories for the production of bulk and value-added compounds is nowadays an advantageous alternative to the traditional petrochemical methods. Nevertheless, the efficiency and productivity of several of these processes can improve with the implementation of micro-oxic or anoxic conditions. In the industrial setting, laccases are appealing catalysts that can oxidize a wide range of substrates and reduce O-2 to H2O. In this work, several laccase-based devices were designed and constructed to modulate the intracellular oxygen concentration in bacterial chassis. These oxygen consuming devices (OCDs) included Escherichia coil's native laccase (CueO) and …

0301 basic medicine[SDV]Life Sciences [q-bio]030106 microbiologyBiomedical Engineeringchemistry.chemical_elementmedicine.disease_causeBiochemistry Genetics and Molecular Biology (miscellaneous)Oxygenlaccase03 medical and health sciencesIn vivomedicineEscherichia coliEscherichia coliLaccasebacterial chassisoxygen consuming devicesGeneral MedicineDirected evolutionAnoxic watersQR030104 developmental biologychemistryBiochemistryTALimiting oxygen concentrationsynthetic biologyIntracellular
researchProduct

2018

AbstractThe cell adhesion glycoprotein E-cadherin (CDH1) is commonly inactivated in breast tumors. Precision medicine approaches that exploit this characteristic are not available. Using perturbation screens in breast tumor cells with CRISPR/Cas9-engineered CDH1 mutations, we identified synthetic lethality between E-cadherin deficiency and inhibition of the tyrosine kinase ROS1. Data from large-scale genetic screens in molecularly diverse breast tumor cell lines established that the E-cadherin/ROS1 synthetic lethality was not only robust in the face of considerable molecular heterogeneity but was also elicited with clinical ROS1 inhibitors, including foretinib and crizotinib. ROS1 inhibitor…

0301 basic medicinebiologyCrizotinibbusiness.industryForetinibSynthetic lethalitymedicine.diseaseCDH103 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicineBreast cancerOncologychemistry030220 oncology & carcinogenesisbiology.proteinCancer researchROS1MedicinebusinessTyrosine kinaseGenetic screenmedicine.drugCancer Discovery
researchProduct

Nature versus design: synthetic biology or how to build a biological non-machine.

2015

The engineering ideal of synthetic biology presupposes that organisms are composed of standard, interchangeable parts with a predictive behaviour. In one word, organisms are literally recognized as machines. Yet living objects are the result of evolutionary processes without any purposiveness, not of a design by external agents. Biological components show massive overlapping and functional degeneracy, standard-free complexity, intrinsic variation and context dependent performances. However, although organisms are not full-fledged machines, synthetic biologists may still be eager for machine-like behaviours from artificially modified biosystems.

0301 basic medicinebusiness.industrySystems biologySystems BiologyBiophysicsInterchangeable partsBioengineeringBiological evolutionBiologyBiochemistryBiological Evolutionlaw.invention03 medical and health sciencesSynthetic biology030104 developmental biologyMetabolic EngineeringlawEscherichia coliAnimalsHumansDegeneracy (biology)Synthetic BiologyArtificial intelligencebusinessBiotechnology
researchProduct

A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance

2020

AbstractThe glycopeptide A40926, produced by the actinomycete Nonomuraea gerenzanensis, is the precursor of dalbavancin, a second-generation glycopeptide antibiotic approved for clinical use in the USA and Europe in 2014 and 2015, respectively. The final product of the biosynthetic pathway is an O-acetylated form of A40926 (acA40926). Glycopeptide biosynthesis in N. gerenzanensis is dependent upon the dbv gene cluster that encodes, in addition to the two essential positive regulators Dbv3 and Dbv4, the putative members of a two-component signal transduction system, specifically the response regulator Dbv6 and the sensor kinase Dbv22. The aim of this work was to assign a role to these two ge…

0301 basic medicinemedicine.drug_class030106 microbiologylcsh:MedicineGlycopeptide antibioticIndustrial microbiologyArticle03 medical and health sciencesBacterial ProteinsTranscription (biology)Genes RegulatorGene clustermedicinelcsh:ScienceGeneRegulator geneRegulation of gene expressionMultidisciplinaryAntimicrobialsChemistrylcsh:RGene Expression Regulation BacterialGlycopeptideAnti-Bacterial AgentsBiosynthetic PathwaysCell biologyActinobacteriaResponse regulator030104 developmental biologyMultigene FamilyTwo component regulatory system glycopeptide A40926 actinomycete Nonomuraea gerenzanensislcsh:QTeicoplaninMicrobial geneticsScientific Reports
researchProduct

Synthesis and antiproliferative mechanism of action of pyrrolo[3′,2′:6,7] cyclohepta[1,2-d]pyrimidin-2-amines as singlet oxygen photosensitizers

2016

A new series of pyrrolo[3′,2′:6,7]cyclohepta[1,2-d]pyrimidin-2-amines, was conveniently prepared using a versatile and high yielding multistep sequence. A good number of derivatives was obtained and the cellular photocytotoxicity was evaluated in vitro against three different human tumor cell lines with EC50 (0.08–4.96 μM) values reaching the nanomolar level. Selected compounds were investigated by laser flash photolysis. The most photocytotoxic derivative, exhibiting a fairly long-lived triplet state (τ ∼ 7 μs) and absorbance in the UV–Vis, was tested in the photo-oxidations of 9,10-anthracenedipropionic acid (ADPA) by singlet oxygen. The photosentizing properties are responsible for the c…

0301 basic medicinemedicine.medical_treatmentPhotodynamic therapyChemistry Techniques SyntheticAntiproliferative activityPhotochemistry01 natural sciencesPhotodynamic therapychemistry.chemical_compound7]cyclohepta[1Drug DiscoveryTriplet stateAmineschemistry.chemical_classificationPhotosensitizing AgentsCell DeathSinglet OxygenChemistrySinglet oxygenGeneral MedicineAntiproliferative activity; Photodynamic therapy; Photosensitizing agents; Pyrrolo[3′; 2′:6; 7]cyclohepta[1; 2-d]pyrimidin-2-amines; Reactive oxygen species; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyPyrrolo[3′2′:67]cyclohepta[12-d]pyrimidin-2-amineSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali2-d]pyrimidin-2-aminesFlash photolysisReactive oxygen specieKineticsAntineoplastic AgentsAbsorbance03 medical and health sciencesCell Line TumormedicineHumansPyrrolo[3′Cell ProliferationPharmacologyReactive oxygen speciesPhotosensitizing agentPhotolysis010405 organic chemistry2′:6Drug Discovery3003 Pharmaceutical SciencePhotodissociationOrganic ChemistryCombinatorial chemistrySettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesAntiproliferative activity; Photodynamic therapy; Photosensitizing agents; Pyrrolo[3′2′:67]cyclohepta[12-d]pyrimidin-2-amines; Reactive oxygen species; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyKinetics030104 developmental biologyDrug DesignReactive oxygen species
researchProduct

Immunogenicity of a Fully Synthetic MUC1 Glycopeptide Antitumor Vaccine Enhanced by Poly(I:C) as a TLR3-Activating Adjuvant.

2017

Fully synthetic MUC1 glycopeptide antitumor vaccines have a precisely specified structure and induce a targeted immune response without suppression of the immune response when using an immunogenic carrier protein. However, tumor-associated aberrantly glycosylated MUC1 glycopeptides are endogenous structures, “self-antigens”, that exhibit only low immunogenicity. To overcome this obstacle, a fully synthetic MUC1 glycopeptide antitumor vaccine was combined with poly(inosinic acid:cytidylic acid), poly(I:C), as a structurally defined Toll-like receptor 3 (TLR3)-activating adjuvant. This vaccine preparation elicited extraordinary titers of IgG antibodies which strongly bound human breast cancer…

0301 basic medicinemedicine.medical_treatmentchemical and pharmacologic phenomenaBiochemistryCancer Vaccines03 medical and health sciencesMice0302 clinical medicineImmune systemCancer immunotherapyAdjuvants ImmunologicDrug DiscoverymedicineAnimalsHumansGeneral Pharmacology Toxicology and PharmaceuticsMUC1PharmacologyVaccines SyntheticbiologyChemistryImmunogenicityOrganic ChemistryMucin-1GlycopeptidesDendritic CellsVirologyGlycopeptideToll-Like Receptor 3030104 developmental biologyPoly I-C030220 oncology & carcinogenesisTLR3biology.proteinMolecular MedicineAntibodyAdjuvantChemMedChem
researchProduct

Reinforcement learning in synthetic gene circuits.

2020

Synthetic gene circuits allow programming in DNA the expression of a phenotype at a given environmental condition. The recent integration of memory systems with gene circuits opens the door to their adaptation to new conditions and their re-programming. This lays the foundation to emulate neuromorphic behaviour and solve complex problems similarly to artificial neural networks. Cellular products such as DNA or proteins can be used to store memory in both digital and analog formats, allowing cells to be turned into living computing devices able to record information regarding their previous states. In particular, synthetic gene circuits with memory can be engineered into living systems to al…

0303 health sciencesArtificial neural networkComputer scienceQH02 engineering and technologyDNA021001 nanoscience & nanotechnologyQ1BiochemistryExpression (mathematics)Living systems03 medical and health sciencesComputingMethodologies_PATTERNRECOGNITIONNeuromorphic engineeringSynthetic geneHuman–computer interactionArtificial IntelligenceGenes SyntheticReinforcement learningQDGene Regulatory Networks0210 nano-technologyAdaptation (computer science)030304 developmental biologyElectronic circuitBiochemical Society transactions
researchProduct

DNA folds threaten genetic stability and can be leveraged for chemotherapy

2020

International audience; Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an…

0303 health sciencesDna targetingDNA damageGenetic stabilityCancer cell proliferationChemical biologySynthetic lethalityComputational biology[CHIM.THER]Chemical Sciences/Medicinal ChemistryBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicinechemistryChemistry (miscellaneous)030220 oncology & carcinogenesis[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Cancer cellMolecular BiologyDNA030304 developmental biology
researchProduct