Search results for "TDP-43"

showing 7 items of 7 documents

The Role of TAR DNA Binding Protein 43 (TDP-43) as a CandiDate Biomarker of Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis

2023

Background: TAR DNA-binding protein 43 (TDP-43) aggregation in neuronal cells is recognized as a hallmark of amyotrophic lateral sclerosis (ALS). Although the literature strongly supports the pathogenetic role of TDP-43 in ALS pathogenesis, the role of TDP-43 as a biomarker of ALS is controversial. We performed a systematic review and meta-analysis to assess the diagnostic performance of TDP-43 for ALS. Methods: Relevant publications were identified by a systematic literature search on PubMed and Web of Science from their inception to 8 April 2022. Results: Seven studies, including 472 individuals, of whom 254 had ALS according to the Revised Amyotrophic Lateral Sclerosis Functional Rating …

TDP-43diagnosisClinical BiochemistrybiomarkerALSDiagnostics
researchProduct

CHARACTERIZATION OF MOLECULAR ISOFORMS AND ROLE OF THE SURVIVAL MOTOR NEURON (SMN) IN MOTOR NEURONS DISEASES.

2014

La sclerosi Laterale Amiotrofica (SLA) e l'Atrofia Muscolare Spinale (SMA) sono malattie neurodegenerative caratterizzate dalla perdita progressiva dei motoneuroni. La SMA è generalmente causata da delezione in omozigosi o mutazione del gene SMN, che codifica per una proteina ubiquitaria e multifunzionale, altamente espressa nel midollo spinale. La SLA è una malattia che può essere familiare o sporadica.Il 20% dei casi familiari è causato da una mutazione dominante nel gene SOD1. Inoltre ci sono altri geni coinvolti in questa malattia, tra cui FUS e TDP43. Lo scopo principale della tesi è quello di studiare il gene, le isoforme, la localizzazione subcellulare ed i partners molecolari di SMN…

Amyotrophic Lateral Sclerosis (ALS) SMN FUS TDP-43.Sclerosi laterale amiotrofica (SLA) SMNFUSTDP-43.Settore BIO/09 - Fisiologia
researchProduct

Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation

2022

Abstract Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G>A. We designed a small interfering RNA that was able to diminish specifically the express…

antisense oligonucleotideCellular and Molecular NeurosciencePsychiatry and Mental healthsiRNA therapyNeurologyallele-specific silencingTDP-43ALS TDP43 siRNA therapy antisense oligonucleotides allele specific silencingSettore MED/26 - NeurologiaALSantisense oligonucleotidesSettore MED/03 - GENETICA MEDICABiological Psychiatry
researchProduct

A novel S379A TARDBP mutation associated to late-onset sporadic ALS

2019

Since 2008, several groups have reported a lot of dominant mutations in TARDBP gene as a primary cause of Amyotrophic lateral sclerosis (ALS). Mutations in TARDBP gene are responsible for 4–5% of familial ALS (fALS) and nearly 1% of sporadic ALS (sALS). To date, over 50 dominant mutations were found in TDP-43 in both familial and sporadic ALS patients, most of which were missense mutations in the C-terminal glycine-rich region. Herein, we describe the clinical and genetic analysis of an Italian non-familial ALS patient with a late onset and a rapid disease progression, which led to the discovery of a novel TARDBP mutation. After neurological evaluation, molecular investigation highlighted t…

TDP-43DNA-Binding ProteinMutation MissenseLate onsetDermatologyBiologymedicine.disease_causeGenetic analysisTARDBP03 medical and health sciencesExon0302 clinical medicinemedicineHumansMissense mutation030212 general & internal medicineAmyotrophic lateral sclerosisAge of OnsetTARDBPGeneticsAged 80 and overMutationAmyotrophic Lateral SclerosisGeneral Medicinemedicine.diseaseDNA-Binding ProteinsPsychiatry and Mental healthMutationFemaleNeurology (clinical)Age of onsetALS030217 neurology & neurosurgeryAmyotrophic Lateral SclerosiHuman
researchProduct

Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches.

2017

Background Adult neurogenesis persists through life at least in classic neurogenic niches. Neurogenesis has been previously described as reduced in neurodegenerative diseases. There is not much knowledge about is adult neurogenesis is or not modified in amyotrophy lateral sclerosis (ALS). All previous publications has studied the ALS SOD1 (superoxide dismutase) transgenic mouse model. The purpose of this study is to examine the process of adult neurogenesis in classic niches (subventricular zone [SVZ] and subgranular zone [SGZ] of the dentate gyrus) in patients with amyotrophic lateral sclerosis (ALS), both with (ALS-FTD) and without associated frontotemporal dementia (FTD). Methods We stud…

0301 basic medicineMalePathologymedicine.medical_specialtyDoublecortin ProteinTDP-43NeurogenesisSOD1Subventricular zoneAdult neurogenesislcsh:RC346-429Subgranular zone03 medical and health sciences0302 clinical medicineNeuroblastNeural Stem CellsLateral VentriclesMedicineHumansAmyotrophic lateral sclerosislcsh:Neurology. Diseases of the nervous systemAgedAged 80 and overbusiness.industryDentate gyrusNeurogenesisAmyotrophic Lateral SclerosisNeurodegenerative diseasesBrainGeneral MedicineMiddle Agedmedicine.diseaseNeural stem cellnervous system diseases030104 developmental biologymedicine.anatomical_structurenervous systemFrontotemporal DementiaFemaleNeurology (clinical)business030217 neurology & neurosurgeryResearch ArticleBMC neurology
researchProduct

ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated…

2022

Abstract Background Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived mi…

General NeuroscienceAmyotrophic Lateral SclerosisImmunologyNeurodegenerative DiseasesMonocytesInflammasomeDNA-Binding ProteinsCellular and Molecular NeurosciencePhagocytosisNeurologyDisease ProgressionHumansSettore MED/26 - NeurologiaMicrogliaTDP-43 inclusionsAmyotrophic lateral sclerosiDNA DamageJournal of Neuroinflammation
researchProduct

Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43

2018

Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was coll…

0301 basic medicineCytoplasmCytoplasmic inclusionFluorescent Antibody TechniqueProtein aggregationHeterogeneous ribonucleoprotein particleHeterogeneous-Nuclear Ribonucleoproteinslcsh:Chemistry0302 clinical medicineDrosophila Proteinsneurodegenerative diseasesnuclear bodylcsh:QH301-705.5SpectroscopyGeneral MedicinehnRNPsComputer Science ApplicationsCell biologyChromatinTransport proteinDNA-Binding ProteinsProtein Transportmedicine.anatomical_structureDrosophilaDrosophila ProteinProtein BindingImitation SWIBiologyCatalysisArticleInorganic Chemistryomega speckles03 medical and health sciencesmedicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyGenetic Association StudiesCell NucleusOrganic Chemistryta1182Chromatin Assembly and DisassemblyCell nucleus030104 developmental biologylcsh:Biology (General)lcsh:QD1-999gene expression<i>Drosophila</i>; nuclear body; omega speckles; dTDP-43; hnRNPs; omega speckles; neurodegenerative diseases; gene expression; gene regulationdTDP-43gene regulation030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct