Search results for "TELECOMMUNICATION"

showing 10 items of 1769 documents

The numerical simulation of heat transfer during a hybrid laser–MIG welding using equivalent heat source approach

2014

International audience; The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with …

0209 industrial biotechnologyMaterials scienceMultiphysics0211 other engineering and technologiesDuplex (telecommunications)Mechanical engineering02 engineering and technologyWeldingNumerical simulation7. Clean energyGas metal arc weldinglaw.invention020901 industrial engineering & automationlawThermalHeat transfer[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringElectrical and Electronic Engineering021102 mining & metallurgyComputer simulationLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsHeat transfer[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicHybrid laser-arc welding
researchProduct

An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals

2016

In this paper, a novel algebraic method is proposed to estimate amplitudes, frequencies, and phases of a biased and noisy sum of complex exponential sinusoidal signals. The resulting parameter estimates are given by original closed formulas, constructed as integrals acting as time-varying filters of the noisy measured signal. The proposed algebraic method provides faster and more robust results, compared with usual procedures. Some computer simulations illustrate the efficiency of our method. Copyright © 2016 John Wiley & Sons, Ltd.

0209 industrial biotechnologyMathematical optimizationNoise (signal processing)020206 networking & telecommunications02 engineering and technologySignalsymbols.namesake020901 industrial engineering & automationAmplitudeSine waveControl and Systems EngineeringSinusoidal waveformSignal Processing0202 electrical engineering electronic engineering information engineeringEuler's formulasymbolsApplied mathematicsDifferential algebraElectrical and Electronic EngineeringAlgebraic numberMathematicsInternational Journal of Adaptive Control and Signal Processing
researchProduct

JOINT TOPOLOGY LEARNING AND GRAPH SIGNAL RECOVERY VIA KALMAN FILTER IN CAUSAL DATA PROCESSES

2018

In this paper, a joint graph-signal recovery approach is investigated when we have a set of noisy graph signals generated based on a causal graph process. By leveraging the Kalman filter framework, a three steps iterative algorithm is utilized to predict and update signal estimation as well as graph topology learning, called Topological Kalman Filter or TKF. Similar to the regular Kalman filter, we first predict the a posterior signal state based on the prior available data and then this prediction is updated and corrected based on the recently arrived measurement. But contrary to the conventional Kalman filter algorithm, we have no information of the transition matrix and hence we relate t…

0209 industrial biotechnologyMean squared errorIterative methodComputer scienceStochastic matrixInference020206 networking & telecommunications02 engineering and technologyKalman filterTopology020901 industrial engineering & automationSignal recovery0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Topological graph theory2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
researchProduct

Parallel distributed compensation for voltage controlled active magnetic bearing system using integral fuzzy model

2018

Parallel Distributed Compensation (PDC) for current-controlled Active Magnetic Bearing System (AMBS) has been quite effective in recent years. However, this method does not take into account the dynamics associated with the electromagnet. This limits the method to smaller scale applications where the electromagnet dynamics can be neglected. Voltage-controlled AMBS is used to overcome this limitation but this comes with serious challenges such as complex mathematical modelling and higher order system control. In this work, a PDC with integral part is proposed for position and input tracking control of voltage-controlled AMBS. PDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy model. …

0209 industrial biotechnologyOperating pointElectromagnetComputer scienceAMB voltage-controlledFuzzy modelComputingMagnetic bearing020206 networking & telecommunications02 engineering and technologyFuzzy logiclaw.inventionActive Magnetic BearingsNonlinear system020901 industrial engineering & automationControl theorylawTakagi-Sugeno0202 electrical engineering electronic engineering information engineeringAir gap (plumbing)/dk/atira/pure/subjectarea/asjc/1700/dk/atira/pure/core/subjects/computingVoltageParallel Distributed CompensationComputer Science(all)
researchProduct

Location-Aware MAC Scheduling in Industrial-Like Environment

2018

We consider an environment strongly affected by the presence of metallic objects, that can be considered representative of an indoor industrial environment with metal obstacles. This scenario is a very harsh environment where radio communication has notorious difficulties, as metallic objects create a strong blockage component and surfaces are highly reflective. In this environment, we investigate how to dynamically allocate MAC resources in time to static and mobile users based on context awareness extracted from a legacy WiFi positioning system. In order to address this problem, we integrate our WiFi ranging and positioning system in the WiSHFUL architecture and then define a hypothesis t…

0209 industrial biotechnologyPositioning systemSettore ING-INF/03 - TelecomunicazioniComputer scienceDistributed computingContext awareness020206 networking & telecommunicationsContext (language use)Ranging02 engineering and technologyNon-line-of-sight propagation020901 industrial engineering & automationIndoor localization systemComponent (UML)MAC scheduler0202 electrical engineering electronic engineering information engineeringContext awarenessArchitectureStatistical hypothesis testing
researchProduct

Efficient Transport Protocol for Networked Haptics Applications

2008

The performance of haptic application is highly sensitive to communication delays and losses of data. It implies several constraints in developing networked haptic applications. This paper describes a new internet protocol called Efficient Transport Protocol (ETP), which aims at developing distributed interactive applications. TCP and UDP are transport protocols commonly used in any kind of networked communication, but they are not focused on real time application. This new protocol is focused on reducing roundtrip time (RTT) and interpacket gap (IPG). ETP is, therefore, optimized for interactive applications which are based on processes that are continuously exchanging data. ETP protocol i…

0209 industrial biotechnologySession Initiation ProtocolInternet Protocol Control Protocolcomputer.internet_protocolComputer scienceResource Reservation ProtocolLink Control ProtocolDistributed computingComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS020206 networking & telecommunications02 engineering and technologylaw.invention020901 industrial engineering & automationInternet protocol suitelawInternet Protocol0202 electrical engineering electronic engineering information engineeringUser Datagram ProtocolReal Time Streaming Protocolcomputer
researchProduct

Graph-theoretical derivation of brain structural connectivity

2020

Brain connectivity at the single neuron level can provide fundamental insights into how information is integrated and propagated within and between brain regions. However, it is almost impossible to adequately study this problem experimentally and, despite intense efforts in the field, no mathematical description has been obtained so far. Here, we present a mathematical framework based on a graph-theoretical approach that, starting from experimental data obtained from a few small subsets of neurons, can quantitatively explain and predict the corresponding full network properties. This model also changes the paradigm with which large-scale model networks can be built, from using probabilisti…

0209 industrial biotechnologyTheoretical computer scienceComputer scienceNeuronal network02 engineering and technologyMECHANISMSCENTRALITY020901 industrial engineering & automationSettore MAT/05 - Analisi MatematicaNeuronal networksConnectome0202 electrical engineering electronic engineering information engineeringINDEXComputer Science::DatabasesRandom graphsSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - InformaticaQuantitative Biology::Neurons and CognitionApplied MathematicsProbabilistic logicExperimental data020206 networking & telecommunicationsComputational MathematicsSYNCHRONIZATIONSIMULATIONGraph (abstract data type)Applied Mathematics and Computation
researchProduct

Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data

2013

International audience; In this paper, we apply an algebraic method to estimate the amplitudes, phases and frequencies of a biased and noisy sum of complex exponential sinusoidal signals. Let us stress that the obtained estimates are integrals of the noisy measured signal: these integrals act as time-varying filters. Compared to usual approaches, our algebraic method provides a more robust estimation of these parameters within a fraction of the signal's period. We provide some computer simulations to demonstrate the efficiency of our method.

0209 industrial biotechnology[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingSignalsymbols.namesake020901 industrial engineering & automation[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingControl theory[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering[ INFO.INFO-AU ] Computer Science [cs]/Automatic Control Engineering0202 electrical engineering electronic engineering information engineeringFraction (mathematics)Algebraic numberNoisy data[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingMathematicsEstimation theory020206 networking & telecommunicationsAmplitudeSinusoidal waveformEuler's formulasymbols[INFO.INFO-AU] Computer Science [cs]/Automatic Control EngineeringAlgorithm[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Algebraic parameter estimation of a biased sinusoidal waveform signal from noisy data

2012

International audience; The amplitude, frequency and phase of a biased and noisy sum of two complex exponential sinusoidal signals are estimated via new algebraic techniques providing a robust estimation within a fraction of the signal period. The methods that are popular today do not seem able to achieve such performances. The efficiency of our approach is illustrated by several computer simulations.

0209 industrial biotechnology[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingPhase (waves)02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingSignalsymbols.namesake020901 industrial engineering & automation[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering[ INFO.INFO-AU ] Computer Science [cs]/Automatic Control Engineering0202 electrical engineering electronic engineering information engineeringElectronic engineeringFraction (mathematics)Differential algebraAlgebraic numberMathematics[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingEstimation theory020206 networking & telecommunicationsAmplitudeEuler's formulasymbols[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithm[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering
researchProduct

Tolerating malicious monitors in detecting misbehaving robots

2008

This paper considers a multi–agent system and focuses on the detection of motion misbehavior. Previous work by the authors proposed a solution, where agents act as local monitors of their neighbors and use locally sensed information as well as data received from other monitors. In this work, we consider possible failure of monitors that may send incorrect information to their neighbors due to spontaneous or even malicious malfunctioning. In this context, we propose a distributed software architecture that is able to tolerate such failures. Effectiveness of the proposed solution is shown through preliminary simulation results.

0209 industrial biotechnologybusiness.industryComputer scienceDistributed computing020206 networking & telecommunicationsContext (language use)security02 engineering and technologyMotion (physics)consensus algorithm020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaWork (electrical)Embedded system0202 electrical engineering electronic engineering information engineeringRobotDistributed software architectureIntrusion detectionmulti-agent systemsSoftware architecturebusiness
researchProduct