Search results for "TFIIS"

showing 1 items of 1 documents

Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.

2017

Background TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but intr…

0301 basic medicineNucleosome mappinglcsh:QH426-470MNase-sensitive nucleosomesRNA polymerase IIComputational biologySaccharomyces cerevisiaeReal-Time Polymerase Chain ReactionBiotecnologia03 medical and health sciencesTranscription (biology)Gene expressionGeneticsNucleosomeMNase-seqMicrococcal NucleaseMolecular BiologyGenebiologyMethodologyHigh-Throughput Nucleotide SequencingPromoterChromatinNucleosomeslcsh:Genetics030104 developmental biologyNucleosomal fuzzinessSubtraction TechniqueTFIISbiology.proteinTranscriptional Elongation FactorsGenèticaMicrococcal nuclease
researchProduct