Search results for "THERMAL-DECOMPOSITION"

showing 2 items of 2 documents

Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions

2018

Iron oxides are among the major constituents of the deep Earth’s interior. Among them, the epsilon phase of Fe2O3 is one of the less studied polymorphs and there is a lack of information about its structural, electronic and magnetic transformations at extreme conditions. Here we report the precise determination of its equation of state and a deep analysis of the evolution of the polyhedral units under compression, thanks to the agreement between our experiments and ab-initio simulations. Our results indicate that this material, with remarkable magnetic properties, is stable at pressures up to 27 GPa. Above 27 GPa, a volume collapse has been observed and ascribed to a change of the local env…

PHASE-TRANSFORMATIONEquation of stateMaterials scienceXRDScienceSILICATEIron oxideIRON(III) OXIDEGeneral Physics and Astronomy02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMantle (geology)ArticlePhysics::Geophysicschemistry.chemical_compoundCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONMAGNETIC PHASESpin crossoverPhase (matter)synchrotron0103 physical sciences[CHIM]Chemical SciencesCRYSTAL-STRUCTUREe-Fe2O3010306 general physicslcsh:ScienceMultidisciplinaryMössbauer spectroscopyIRONQIron(III) oxideSPIN-CROSSOVERGeneral Chemistry021001 nanoscience & nanotechnologySilicateTHERMAL-DECOMPOSITIONEXAFShigh pressureFE2O3 POLYMORPHdiamond anvil cellchemistry13. Climate actionChemical physicslcsh:Q0210 nano-technologyEarth (classical element)Nature Communications
researchProduct

Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether

2018

Considering the importance of ethanol (EtOH) as an engine fuel and a key component of surrogate fuels, the further understanding of its auto-ignition and oxidation characteristics at engine-relevant conditions (high pressures and low temperatures) is still necessary. However, it remains difficult to measure ignition delay times for ethanol at temperatures below 850 K with currently available facilities including shock tube and rapid compression machine due to its low reactivity. Considering the success of our recent study of toluene oxidation under similar conditions [38], dimethyl ether (DME) has been selected as a radical initiator to explore the low-temperature reactivity of ethanol. In …

IGNITION DELAY020209 energyGeneral Chemical EngineeringRAPID COMPRESSION MACHINEGeneral Physics and AstronomyEnergy Engineering and Power TechnologyLibrary science02 engineering and technologyPRESSURE FLOW REACTORGAS-PHASE7. Clean energychemistry.chemical_compound[SPI]Engineering Sciences [physics]RATE CONSTANTSLow-temperature chemistry020401 chemical engineering0202 electrical engineering electronic engineering information engineeringDMELAMINAR BURNING VELOCITYOrganic chemistryDimethyl ether[INFO]Computer Science [cs]0204 chemical engineeringSHOCK-TUBECHEMICAL-KINETICSComputingMilieux_MISCELLANEOUSEthanolGeneral ChemistryTHERMAL-DECOMPOSITIONIgnition delay timesFuel TechnologychemistryLIQUID FUELS13. Climate action
researchProduct