Search results for "THERMAL-ISOMERIZATION"

showing 1 items of 1 documents

Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning

2015

Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an io…

RELIEF GRATINGSDENSITY-FUNCTIONAL THEORY CALCULATIONSMaterials sciencePHOTOINDUCED BIREFRINGENCE116 Chemical sciencesta221Supramolecular chemistryPhotochemistrysupramolecular chemistryDENSITY-FUNCTIONAL THEORYchemistry.chemical_compoundMaterials ChemistryMoleculeTHERMAL-ISOMERIZATIONPOLARIZATION DEPENDENCECO-CRYSTALSLIQUID-CRYSTAL ORDERta218chemistry.chemical_classificationta214Halogen bondta114PhotoswitchHydrogen bondPolymers Halogen Bonding Supramolecular Chemistry Photoresponsive AzobenzeneGeneral Chemistryhydrogen bondingPOLYMER-AZOBENZENE COMPLEXESSupramolecular polymersSOLID-STATEchemistryAzobenzeneHALOGEN BONDINGHalogenlight-induced surface patterningSettore CHIM/07 - Fondamenti Chimici Delle TecnologiePHOTONIC APPLICATIONSPOLYMER-AZOBENZENE COMPLEXES; DENSITY-FUNCTIONAL THEORY; LIQUID-CRYSTAL ORDER; RELIEF GRATINGS; SOLID-STATE; PHOTOINDUCED BIREFRINGENCE; POLARIZATION DEPENDENCE; THERMAL-ISOMERIZATION; PHOTONIC APPLICATIONS; CO-CRYSTALSJournal of Materials Chemistry C
researchProduct