Search results for "TIME SERIES"

showing 10 items of 247 documents

An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram

2016

We present the first application of the emerging framework of information dynamics to the characterization of the electroencephalography (EEG) activity. The framework provides entropy-based measures of information storage (self entropy, SE) and information transfer (joint transfer entropy (TE) and partial TE), which are applied here to detect complex dynamics of individual EEG sensors and causal interactions between different sensors. The measures are implemented according to a model-free and fully multivariate formulation of the framework, allowing the detection of nonlinear dynamics and direct links. Moreover, to deal with the issue of volume conduction, a compensation for instantaneous e…

AdultMaleInformation transferEntropyComputation0206 medical engineeringInformation TheoryBiomedical Engineering02 engineering and technologyScalp electroencephalogramElectroencephalographyMachine learningcomputer.software_genreEEG propagationYoung Adult03 medical and health sciences0302 clinical medicinevolume conductionmedicineHumansCausal connectivitytransfer entropy (TE)MathematicsBrain MappingScalpmedicine.diagnostic_testbusiness.industryBrainElectroencephalographySignal Processing Computer-AssistedPattern recognitioncomplex dynamic020601 biomedical engineeringmultivariate time series analysiComplex dynamicsNonlinear systemSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaFemaleentropy estimationTransfer entropyArtificial intelligenceInformation dynamicsbusinesscomputer030217 neurology & neurosurgeryIEEE Transactions on Biomedical Engineering
researchProduct

Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer

2014

In the study of interacting physiological systems, model-free tools for time series analysis are fundamental to provide a proper description of how the coupling among systems arises from the multiple involved regulatory mechanisms. This study presents an approach which evaluates direction, magnitude, and exact timing of the information transfer between two time series belonging to a multivariate dataset. The approach performs a decomposition of the well-known transfer entropy (TE) which achieves 1) identifying, according to a lag-specific information-theoretic formulation of the concept of Granger causality, the set of time lags associated with significant information transfer, and 2) assig…

AdultMaleInformation transferMultivariate statisticsDynamical systems theoryDatabases FactualComputer sciencePhysiologyEntropyBiomedical EngineeringBlood Pressuredynamical systemYoung AdultGranger causalityControl theoryHumansAutonomic nervous systemmultivariate time serieTime seriesmutual informationcardiovascular controlconditional entropy (CE)RespirationModels CardiovascularComputational BiologyHeartMutual informationCausalityNonlinear systemSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityTransfer entropy
researchProduct

Time-Varying Surrogate Data to Assess Nonlinearity in Nonstationary Time Series: Application to Heart Rate Variability

2009

We propose a method to extend to time-varying (TV) systems the procedure for generating typical surrogate time series, in order to test the presence of nonlinear dynamics in potentially nonstationary signals. The method is based on fitting a TV autoregressive (AR) model to the original series and then regressing the model coefficients with random replacements of the model residuals to generate TV AR surrogate series. The proposed surrogate series were used in combination with a TV sample entropy (SE) discriminating statistic to assess nonlinearity in both simulated and experimental time series, in comparison with traditional time-invariant (TIV) surrogates combined with the TIV SE discrimin…

AdultTime FactorsComputer scienceRestBiomedical EngineeringSurrogate dataHeart RateStatisticsHumansHeart rate variabilityEntropy (information theory)Computer SimulationNonstationarityEntropy (energy dispersal)Time seriesEntropy (arrow of time)StatisticModels StatisticalEntropy (statistical thermodynamics)RespirationNonlinear dynamicModels CardiovascularComplexitySample entropyNonlinear systemNonlinear DynamicsAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaSurrogate dataTime-varying (TV) autoregressive (AR) modelHeart rate variability (HRV)AlgorithmsEntropy (order and disorder)IEEE Transactions on Biomedical Engineering
researchProduct

Vegetation dynamics from NDVI time series analysis using the wavelet transform

2009

A multi-resolution analysis (MRA) based on the wavelet transform (WT) has been implemented to study NDVI time series. These series, which are non-stationary and present short-term, seasonal and long-term variations, can be decomposed using this MRA as a sum of series associated with different temporal scales. The main focus of the paper is to check the potential of this MRA to capture and describe both intra- and inter-annual changes in the data, i.e., to discuss the ability of the proposed procedure to monitor vegetation dynamics at regional scale. Our approach concentrates on what wavelet analysis can tell us about a NDVI time series. On the one hand, the intra-annual series, linked to th…

Advanced very-high-resolution radiometerSoil ScienceWavelet transformGeologyVegetationLand coverSeasonalitymedicine.diseaseNormalized Difference Vegetation IndexWaveletmedicineComputers in Earth SciencesTime seriesRemote sensingMathematicsRemote Sensing of Environment
researchProduct

Exploring the validity of the long term data record V4 database for land surface monitoring

2015

The last (and final) version of the Long Term Data Record (LTDR) — Version 4 — has been released recently by NASA. This database includes daily information for all AVHRR (Advanced Very High Resolution Radiometer) channels, as well as ancillary data, since July 1981 up to present. This database is the longest available record of remotely sensed data useful for land surface monitoring, since it allows the estimation of vegetation indices at daily resolution, as well as the daily estimation of land surface temperature (LST). Here, we analyze the fitness of this database for land surface monitoring. To that end, we first estimated NDVI (Normalized Difference Vegetation Index), LST, as well as e…

Ancillary dataSeries (stratigraphy)GeographyDatabaseAdvanced very-high-resolution radiometerLong term dataSolar zenith angleVegetationTime seriescomputer.software_genrecomputerNormalized Difference Vegetation IndexRemote sensing2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp)
researchProduct

Ten years surface-atmosphere water budget from the ISAC micrometeorological base in Salento peninsula and comments on the aquifer balance

2016

Data from a ten years (2003-2013) period of activity of the ISAC-Lecce micrometeorological station have been discussed focusing on the atmosphere-surface exchange. Some suitable indices have been calculated such as the precipitation intensity, the aridity index and the ground water infiltration fraction (ratio of the difference between precipitation and real evapotranspiration and the precipitation). Possible trends of annual averages in the decadal period are considered, trying to take also into account the statistical uncertainty associated to measurement errors and missing data. The results indicate a significant increasing in the precipitation intensity together with an experimental evi…

Aridity IndexMarine salt intrusionTime seriesCoastal aquiferEvapotranspirationEddy covariancePrecipitation intensityWater balanceKarstification
researchProduct

A new approach to portfolio selection based on forecasting

2023

In this paper we analyze the portfolio selection problem from a novel perspective based on the analysis and prediction of the time series corresponding to the portfolio’s value. Namely, we define the value of a particular portfolio at the time of its acquisition. Using the time series of historical prices of the different financial assets, we calculate backward the value that said portfolio would have had in past time periods. A damped trend model is then used to analyze this time series and to predict the future values of the portfolio, providing estimates of the mean and variance for different forecasting horizons. These measures are used to formulate the portfolio selection problem, whic…

Artificial Intelligencetime series analysisGeneral EngineeringfinanceforecastingUNESCO::CIENCIAS TECNOLÓGICASmulti-objective genetic algorithmportfolio optimizationComputer Science Applications
researchProduct

Exploiting deep learning algorithms and satellite image time series for deforestation prediction

2022

In recent years, we have witnessed the emergence of Deep Learning (DL) methods, which have led to enormous progress in various fields such as automotive driving, computer vision, medicine, finances, and remote sensing data analysis. The success of these machine learning methods is due to the ever-increasing availability of large amounts of information and the computational power of computers. In the field of remote sensing, we now have considerable volumes of satellite images thanks to the large number of Earth Observation (EO) satellites orbiting the planet. With the revisit time of satellites over an area becoming shorter and shorter, it will probably soon be possible to obtain daily imag…

Artificial intelligenceDeforestation predictionRéseaux de neurones récurrentsApprentissage profondRecurrent neural networks[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingImage time seriesDeep learningSatellite imagesSéries temporelles d'imagesIntelligence artificiellePrédiction déforestationImages satellitaires
researchProduct

Two-level branch prediction using neural networks

2003

Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors and replace the second level PHT with a neural network. Two neural networks are considered: a learning vec…

Artificial neural networkbusiness.industryTime delay neural networkComputer scienceVector quantizationLearning vector quantisationBranch predictorMachine learningcomputer.software_genreBackpropagationApplication areasHardware and ArchitectureArtificial intelligenceHardware_CONTROLSTRUCTURESANDMICROPROGRAMMINGTime seriesbusinesscomputerSoftwareJournal of Systems Architecture
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct