Search results for "TIME SERIES"
showing 10 items of 247 documents
Global Estimation of Soil Moisture Persistence with L and C-Band Microwave Sensors
2018
© 2018 IEEE Measurements of soil moisture are needed for a better global understanding of the land surface-climate feedbacks at both the local and the global scale. Satellite sensors operating in the low frequency microwave spectrum (from 1 to 10 GHz) have proven to be suitable for soil moisture retrievals. These sensors now cover nearly 4 decades thus allowing for global multi-mission climate data records. In this paper, we assess the possibility of using L-band (SMOS) and C-band (AMSR2, ASCAT) remotely sensed soil moisture time series for the global estimation of soil moisture persistence. A multi-output Gaussian process regression model is applied to ensure spatio-temporal coverage of th…
Linear and nonlinear parametric model identification to assess granger causality in short-term cardiovascular interactions
2008
We assessed directional relationships between short RR interval and systolic arterial pressure (SAP) variability series according to the concept of Granger causality. Causality was quantified as the predictability improvement (PI) of a time series obtained when samples of the other series were used for prediction, i.e. moving from autoregressive (AR) to AR exogenous (ARX) prediction. AR and ARX predictions were performed both by linear and nonlinear parametric models. The PIs of RR given SAP and of SAP given RR, measuring baroreflex and mechanical couplings, were calculated in 15 healthy subjects in the resting supine and upright tilt positions. Using nonlinear models we found a bilateral i…
A new Framework for the Spectral Information Decomposition of Multivariate Gaussian Processes
2021
: Different information-theoretic measures are available in the literature for the study of pairwise and higher-order interactions in multivariate dynamical systems. While these measures operate in the time domain, several physiological and non-physiological systems exhibit a rich oscillatory content that is typically analyzed in the frequency domain through spectral and cross-spectral approaches. For Gaussian systems, the relation between information and spectral measures has been established considering coupling and causality measures, but not for higher-order interactions. To fill this gap, in this work we introduce an information-theoretic framework in the frequency domain to quantify t…
Stochastic models for wind speed forecasting
2011
Abstract This paper is concerned with the problem of developing a general class of stochastic models for hourly average wind speed time series. The proposed approach has been applied to the time series recorded during 4 years in two sites of Sicily, a region of Italy, and it has attained valuable results in terms both of modelling and forecasting. Moreover, the 24 h predictions obtained employing only 1-month time series are quite similar to those provided by a feed-forward artificial neural network trained on 2 years data.
Methodological considerations for interrupted time series analysis in radiation epidemiology: an overview
2021
Interrupted time series analysis (ITSA) is a method that can be applied to evaluate health outcomes in populations exposed to ionizing radiation following major radiological events. Using aggregated time series data, ITSA evaluates whether the time trend of a health indicator shows a change associated with the radiological event. That is, ITSA checks whether there is a statistically significant discrepancy between the projection of a pre-event trend and the data empirically observed after the event. Conducting ITSA requires one to consider specific methodological issues due to unique threats to internal validity that make ITSA prone to bias. We here discuss the strengths and limitations of …
Multiscale Granger causality analysis by à trous wavelet transform
2017
Since interactions in neural systems occur across multiple temporal scales, it is likely that information flow will exhibit a multiscale structure, thus requiring a multiscale generalization of classical temporal precedence causality analysis like Granger's approach. However, the computation of multiscale measures of information dynamics is complicated by theoretical and practical issues such as filtering and undersampling: to overcome these problems, we propose a wavelet-based approach for multiscale Granger causality (GC) analysis, which is characterized by the following properties: (i) only the candidate driver variable is wavelet transformed (ii) the decomposition is performed using the…
Statistical geometric affinity in human brain electric activity
2007
10 pages, 9 figures.-- PACS nrs.: 87.19.La; 05.45.Tp.-- ISI Article Identifier: 000246890100105
Minimally Invasive Assessment of Mental Stress based on Wearable Wireless Physiological Sensors and Multivariate Biosignal Processing
2019
The development of connected health technologies for the continuous monitoring of the psychophysical state of individuals performing daily life activities requires the aggregation of non-intrusive sensors and the availability of methods and algorithms for extracting the relevant physiological information. The present study proposes an integrated approach for the objective assessment of mental stress which combines wirelessly connected low invasive biosensors with multivariate physiological time series analysis. In a group of 18 healthy subjects monitored in a relaxed resting state and during two experimental conditions inducing mental stress and sustained attention (respectively, mental ari…
Online mass flow prediction in CFB boilers
2009
Fuel feeding and inhomogeneity of fuel typically cause process fluctuations in the circulating fluidized bed (CFB) process. If control systems fail to compensate for the fluctuations, the whole plant will suffer from fluctuations that are reinforced by the closed-loop controls. This phenomenon causes a reduction of efficiency and lifetime of process components. Therefore, domain experts are interested in developing tools and techniques for getting better understanding of underlying processes and their mutual dependencies in CFB boilers. In this paper we consider an application of data mining technology to the analysis of time series data from a pilot CFB reactor. Namely, we present a rather…
Network attack detection and classification by the F-transform
2015
We solve the problem of network attack detection and classification. We discuss the way of generation and simulation of an artificial network traffic data. We propose an efficient algorithm for data classification that is based on the F-transform technique. The algorithm successfully passed all tests and moreover, it showed ability to perform classification in an on-line regime.