Search results for "TPS"
showing 10 items of 425 documents
On the half-metallicity of Co2FeSi Heusler alloy: Point-contact Andreev reflection spectroscopy andab initiostudy
2013
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with point contact Andreev reflection (PCAR) spectroscopy measurements, which give much lower values of spin polarization, P. Here, we present the spin polarization measurements of Co2FeSi by the PCAR technique, along with a thorough computational exploration, within the DFT and a GGA+U approach, of the Coulomb exchange U parameters for Co and Fe atoms, taking into account spin-orbit coupling. We find that the orbital contribution (mo) to the total magnetic moment (mT) is significant, since it…
Two-dimensional spectroscopy for the study of ion Coulomb crystals
2015
Ion Coulomb crystals are currently establishing themselves as a highly controllable test-bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals however remains an experimental challenge. In this work, we show how to extend the concepts of multi-dimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detec…
The translationally-invariant coupled cluster method in coordinate space
2000
We study a formulation of the translationally-invariant coupled cluster method in coordinate space. Previous calculations in configuration space showed poor convergence, a problem that the new formulation is expected to remedy. This question is investigated for a system of bosons interacting through the Wigner part of the Afnan-Tang S3 interaction, where previous results exist.
Magnetic field driven enhancement of the weak decay width of charged pions
2020
We study the effect of a uniform magnetic field B→ on the decays π⁻ → l⁻ ν⁻l, where l⁻ = e⁻, μ⁻, carrying out a general analysis that includes four π⁻ decay constants. Taking the values of these constants from a chiral effective Nambu-Jona-Lasinio (NJL) model, it is seen that the total decay rate gets strongly increased with respect to the B = 0 case, with an enhancement factor ranging from ∼ 10 for eB = 0.1 GeV² up to ∼ 10³ for eB = 1 GeV². The ratio between electronic and muonic decays gets also enhanced, reaching a value of about 1 : 2 for eB = 1 GeV². In addition, we find that for large B the angular distribution of outgoing antineutrinos shows a significant suppression in the direction…
Schematic and realistic model calculations of the isovector spin monopole excitations in 116In
2012
The excitation of Gamow-Teller (GT) and isovector spin monopole (IVSM) Jπ=1+ modes in 116In by (p,n) and (n,p) charge-exchange reactions on 116Cd and on 116Sn, respectively, is studied within the framework of the quasiparticle random-phase approximation. The calculations have been performed both for schematic and realistic model situations. It appears that the calculated admixture of the IVSM and Gamow-Teller (GT) Jπ=1+ excitations is negligible and that the contribution to the strength above 20 MeV of excitation energy, in 116In, is due to the IVSM (σr2t ±) mode. This result is compared with the recent experimental work that reported a large amount of both (p,n) and (n,p) strength beyond 1…
Twisted-Light-Ion Interaction: The Role of Longitudinal Fields.
2017
The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped $^{40}$Ca$^+$ ion by Schmiegelow et al, Nat.\ Comm.\ 7, 12998 (2016), with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental d…
A measurement of material in the ATLAS tracker using secondary hadronic interactions in 7 TeV pp collisions
2016
Knowledge of the material in the ATLAS inner tracking detector is crucial in understanding the reconstruction of charged-particle tracks, the performance of algorithms that identify jets containing b-hadrons and is also essential to reduce background in searches for exotic particles that can decay within the inner detector volume. Interactions of primary hadrons produced in pp collisions with the material in the inner detector are used to map the location and amount of this material. The hadronic interactions of primary particles may result in secondary vertices, which in this analysis are reconstructed by an inclusive vertex-finding algorithm. Data were collected using minimum-bias trigger…
Evidence for the spin-0 nature of the Higgs boson using ATLAS data
2013
We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portu…
A neural network clustering algorithm for the ATLAS silicon pixel detector
2014
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. …
Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emiss…
2015
The increasing attention paid to the environment has led to a reduction in the emissions from wastewater treatment plants (WWTPs). Moreover, the increasing interest in the greenhouse gas (GHG) emissions from WWTPs suggests that we reconsider the traditional tools used for designing and managing WWTPs. Indeed, nitrous oxide, carbon dioxide and methane can be emitted from wastewater treatment, significantly contributing to the greenhouse gas (GHG) footprint. The reduction of energy consumption as well as GHG emission are of particular concern for large WWTPs which treat the majority of wastewater in terms of both volume and pollution load. Nowadays, there is an increasing need to develop new …