Search results for "TRANSCRIPTION FACTOR"
showing 10 items of 1493 documents
2021
Myoglobin (MB) is an oxygen-binding protein usually found in cardiac myocytes and skeletal muscle fibers. It may function as a temporary storage and transport protein for O2 but could also have scavenging capacity for reactive oxygen and nitrogen species. In addition, MB has recently been identified as a hallmark in luminal breast cancer and was shown to be robustly induced under hypoxia. Cellular responses to hypoxia are regulated by the transcription factor hypoxia-inducible factor (HIF). For exploring the function of MB in breast cancer, we employed the human cell line MDA-MB-468. Cells were grown in monolayer or as 3D multicellular spheroids, which mimic the in vivo avascular tumor arch…
Study of the aryl hydrocarbon receptor mediated effects through in silico modeling and in vitro bioassays
2020
The aryl hydrocarbon receptor (AhR) is a cytoplasmatic sensor of diverse endogenous and exogenous substances. In a toxicological context, the former known as “dioxin receptor” has been investigated as a xenobiotic chemoreceptor and due to its roles in mediating carcinogenesis, endocrine disruption, among other immunological, hepatic, cardiovascular, and dermal toxicity mechanisms. The deep physiological implications of AhR in cellular proliferation, adhesion, division, differentiation, as well as in the reproductive, immunological and cardiovascular homeostasis have opened a new field of research in order to harness AhR’s pharmacological potential. Hence, AhR has become a therapeutic target…
Higher plants possess two different types of ATX1-like copper chaperones.
2007
Abstract Copper (Cu) chaperones constitute a family of small Cu+-binding proteins required for Cu homeostasis in eukaryotes. The ATX1 family of Cu chaperones specifically delivers Cu to heavy metal P-type ATPases. The plant Arabidopsis thaliana expresses the ATX1-like Cu chaperone CCH, which exhibits a plant-specific carboxy-terminal domain (CTD) with unique structural properties. We show that CCH homologues from other higher plants contain CTDs with structural properties similar to Arabidopsis CCH. Furthermore, we identify a new ATX1-like Cu chaperone in Arabidopsis, AtATX1, which functionally complements yeast atx1Δ and sod1Δ associated phenotypes, and localizes to the cytosol of Arabidop…
Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets.
2006
Mesenchymal cells in the developing pancreas express the neural stem cell marker nestin and the transcription factor islet-1 (Isl-1). Using defined culture conditions we isolated on a single cell basis nestin producing cells from human pancreatic islets. These cells were immortalized with lentiviral vectors coding for telomerase and mBmi. They are positive for Isl-1 and nestin and have the potential to adopt a pancreatic endocrine phenotype with expression of critical transcription factors including Ipf-1, Isl-1, Ngn-3, Pax4, Pax6, Nkx2.2, and Nkx6.1 as well as the islet hormones insulin, glucagon, and somatostatin. In addition, they can be differentiated into human albumin producing cells …
Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation
2013
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation. Transition of epithelial/mesothelial cells into myofibroblasts [epithelial-to-mesenchymal transition (EMT)] occurs under the influence of transforming growth factor (TGF)-β1, with Snail being a major transcription factor. We study here the role of the heat-shock protein HSP27 in fibrogenesis and EMT. In vitro, we have up- and down-modulated HSP27 expression in mesothelial and epithelial cell lines and studied the expression of different EMT markers induced by TGF-β1. In vivo, we inhibited HSP27 with the antisense oligonucleotide OGX-427 (in phase II clinical trials as anticancer agent)…
EZH2 mutations are frequent and represent an early event in follicular lymphoma
2013
Gain of function mutations in the H3K27 methyltransferase EZH2 represent a promising therapeutic target in germinal center lymphomas. In this study, we assessed the frequency and distribution of EZH2 mutations in a large cohort of patients with follicular lymphoma (FL) (n = 366) and performed a longitudinal analysis of mutation during the disease progression from FL to transformed FL (tFL) (n = 33). Mutations were detected at 3 recurrent mutation hot spots (Y646, A682, and A692) in 27% of FL cases with variant allele frequencies (VAF) ranging from 2% to 61%. By comparing VAF of EZH2 with other mutation targets (CREBBP, MLL2, TNFRSF14, and MEF2B), we were able to distinguish patients harbori…
Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum.
2021
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyze the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their ex…
Developmental Abnormalities of the Thyroid
2010
Publisher Summary This chapter explores the abnormalities in the development of the thyroid gland during organogenesis referred to as thyroid dysgenesis. Permanent primary congenital hypothyroidism (CH) is mentioned to be the most common congenital endocrine disorder as estimated from systematic biochemical screening of newborns. The functional disorders of the thyroid gland are known as thyroid dyshormonogenesis and this disorder is typically inherited in an autosomal recessive manner and common in populations with a high degree of consanguinity. It briefly reviews the single gene disorders that cause CH from thyroid dysgenesis, and mutations that activate the thyrotropin receptor (TSH) re…
A New Mutation in the Promoter Region of the PAX8 Gene Causes True Congenital Hypothyroidism with Thyroid Hypoplasia in a Girl with Down's Syndrome
2014
Thyroid dysfunction is common in newborn infants with Down's syndrome (DS), but defects causing classic thyroid dysgenesis (TD) with permanent congenital hypothyroidism (CH) have not been described.We studied a girl with DS and CH who had a mutation in the promoter sequence of the PAX8 gene.A female infant was found to have trisomy 21 and CH, with a venous thyrotropin (TSH) of150 mU/L and a free thyroxine (fT4) of 15.1 pmol/L (day 12). Thyroid peroxidase antibodies and thyroglobulin antibodies were elevated. Scintigraphy showed normal uptake, but ultrasound identified a small gland with heterogenous echotexture and cystic changes. Sequence analysis of the PAX8 gene revealed a new heterozygo…
MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation
2019
Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (…