Search results for "TRANSPORTERS"

showing 10 items of 203 documents

The transcriptomics of an experimentally evolved plant-virus interaction

2015

[EN] Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogene…

0106 biological sciences0301 basic medicineArabidopsis thalianaPotyvirusArabidopsisFalse discovery rateLong-distance movementGeneralist and specialist species01 natural sciencesArticle03 medical and health sciencesPlant virusViral emergencePlant defense against herbivoryArabidopsis thalianaGeneticsEcotypeMultidisciplinarybiologyEcotypePlum pox virusTobacco etch virusGene Expression ProfilingfungiPotyvirusfood and beveragesTobacco-ETCH-virusbiology.organism_classification030104 developmental biologyExperimental evolutionABC transportersHost-Pathogen InteractionsGene expressionAdaptationChloroplast proteome010606 plant biology & botany
researchProduct

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under N…

2017

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, memb…

0106 biological sciences0301 basic medicineRhizophagus irregularisMICROBE INTERACTIONSPhysiologyarbuscule[SDV]Life Sciences [q-bio]racine finePlant Science01 natural sciencesnitrogenTranscriptomeGene Expression Regulation PlantMycorrhizaeLOTUS-JAPONICUSGLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSION2. Zero hungerazotePHOSPHATE TRANSPORTERAMMONIUM TRANSPORTERSorgan transplantationGeneral Medicinefood shortageMedicago truncatulaArbuscular mycorrhizasymbiose mycorhiziennePopulusfamineEnergy sourceARBUSCULAR MYCORRHIZABiologySULFUR STARVATION03 medical and health sciencesPHOSPHORUS ACQUISITIONSymbiosistransport de nutrimentsBotanySymbiosisGene Expression Profilingblack cottonwoodCell Biologybiology.organism_classificationMEDICAGO-TRUNCATULATransplantationpopulus trichocarpa030104 developmental biologyMembrane biogenesis010606 plant biology & botanytransplantation
researchProduct

Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas …

2020

Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant&ndash

0106 biological sciences0301 basic medicinephylogeny01 natural scienceslcsh:Chemistrywalnut blightTAL effectorType III Secretion Systems2.1 Biological and endogenous factorsAetiologylcsh:QH301-705.5SpectroscopyPlant Proteins<i>Xanthomonas</i>GeneticsGenomebiologyfood and beveragesSWEET sugar transportersGeneral MedicineSucrose transportComputer Science ApplicationsInfectious DiseasesMultigene Familygene familyJuglansXanthomonasPlant DevelopmentJuglansCatalysisInorganic Chemistry03 medical and health sciencesTAL effectorXanthomonasGeneticsGene familySugar transporterPhysical and Theoretical ChemistryMolecular BiologyGenePlant DiseasesChemical PhysicsOrganic ChemistryfungiMembrane Transport ProteinsBiological TransportXanthomonas arboricolaPlantbiology.organism_classification030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression Regulationgene expressionOther Biological SciencesOther Chemical Sciences010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Calcium—Nutrient and Messenger

2019

Calcium is an essential element needed for growth and development of plants under both non-stressed and stress conditions. It thereby fulfills a dual function, being not only an important factor for cell wall and membrane stability, but also serving as a second messenger in many developmental and physiological processes, including the response of plants to biotic stress. The perception of non-self hereby induces an influx of calcium ions (Ca2+) into the cytosol, which is decoded into downstream responses ultimately leading to defense. Maintaining intracellular Ca2+ homeostasis is crucial for the ability to generate this signal. This review will describe the current knowledge of the mechanis…

0106 biological sciences0301 basic medicinerootsMini ReviewCellular homeostasischemistry.chemical_elementPlant SciencetransportersCalciumlcsh:Plant culture01 natural sciencesCell wall03 medical and health scienceslcsh:SB1-1110calciumChemistryBiotic stressnutrient signalingimmunityCell biologyCytosol030104 developmental biologykinasesuptakeSecond messenger systemcell wallIntracellularHomeostasis010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Sugar transporters in plants and in their interactions with fungi.

2012

International audience; Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant fungal interactio…

0106 biological sciencesSucroseSucroseMonosaccharide Transport Proteins[SDV]Life Sciences [q-bio]plantPlant ScienceBiologyCarbohydrate metabolism01 natural sciences03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsSymbiosisMycorrhizaemonosaccharideMonosaccharidetransporters mediateSugarSymbiosis030304 developmental biologyPlant Diseaseschemistry.chemical_classification0303 health sciencesfungiMonosaccharidesfood and beveragesTransporterPlantsSubcellular localizationPlant LeaveschemistryBiochemistry[SDE]Environmental SciencesCarbohydrate MetabolismEffluxtransport of sugar010606 plant biology & botanyTrends in plant science
researchProduct

Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

2014

International audience; In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formatio…

0106 biological sciencesplant–microbe interactions[SDV]Life Sciences [q-bio]signaling proteinsplasma membrane;vesicular trafficking;plant-microbe interactions;signaling proteins;sugar transportersReview Articlerécepteur cytoplasmique et nucléairePlant ScienceBiologymembrane plasmiqueSugar transporterslcsh:Plant cultureEndocytosisBioinformaticsplasma membrane01 natural sciencesPlant-Microbe Interactionsvoie secretoire03 medical and health sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110ReceptorSecretory pathway030304 developmental biologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesphysiologie cellulaire végétaletransport de protéineEndoplasmic reticulumPlant cellTransport proteinCell biologyinteraction protéine membranechemistry[SDE]Environmental Sciencesvesicular traffickingIntracellular010606 plant biology & botanyFrontiers in Plant Science
researchProduct

2018

ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, al…

0301 basic medicine030102 biochemistry & molecular biologyIn silicoBiophysicsATP-binding cassette transporterCell BiologyPlasma protein bindingBiologyBiochemistry03 medical and health sciencesTransmembrane domain030104 developmental biologyProtein structureBiochemistryATP hydrolysisFunction (biology)ATP-binding domain of ABC transportersBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Cellular Concentrations of the Transporters DctA and DcuB and the Sensor DcuS of Escherichia coli and the Contributions of Free and Complexed DcuS to…

2017

ABSTRACT In Escherichia coli , the catabolism of C 4 -dicarboxylates is regulated by the DcuS-DcuR two-component system. The functional state of the sensor kinase DcuS is controlled by C 4 -dicarboxylates (like fumarate) and complexation with the C 4 -dicarboxylate transporters DctA and DcuB, respectively. Free DcuS (DcuS F ) is known to be constantly active even in the absence of fumarate, whereas the DcuB-DcuS and DctA-DcuS complexes require fumarate for activation. To elucidate the impact of the transporters on the functional state of DcuS and the concentrations of DcuS F and DcuB-DcuS (or DctA-DcuS), the absolute levels of DcuS, DcuB, and DctA were determined in aerobically or anaerobic…

0301 basic medicine030106 microbiologyBiologymedicine.disease_causeMicrobiologyDNA-binding proteinMass Spectrometry03 medical and health sciencesFumaratesTranscriptional regulationmedicineEscherichia coliDicarboxylic AcidsAnaerobiosisPhosphorylationMolecular BiologyTranscription factorEscherichia coliDicarboxylic Acid TransportersCatabolismKinaseEscherichia coli ProteinsAutophosphorylationGene Expression Regulation BacterialAerobiosisDNA-Binding Proteins030104 developmental biologyBiochemistryPhosphorylationProtein KinasesSignal TransductionTranscription FactorsResearch ArticleJournal of bacteriology
researchProduct

Effect of ABC transporter expression and mutational status on survival rates of cancer patients

2020

ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression …

0301 basic medicineAdultMaleMutation rateNonsense mutationSingle-nucleotide polymorphismATP-binding cassette transporterRM1-950BiologyMultidrug resistanceP-glycoproteinPolymorphism Single Nucleotide03 medical and health sciences0302 clinical medicineNeoplasmsmedicineMissense mutationHumansSurvival analysisAgedCancerPharmacologyAged 80 and overPrognostic factorSequence Analysis RNACancerABCB5General MedicineMiddle AgedSurvival analysismedicine.diseaseMolecular Docking SimulationSurvival Rate030104 developmental biologyABC transporters030220 oncology & carcinogenesisMutationCancer researchATP-Binding Cassette TransportersFemaleTherapeutics. PharmacologyBiomedicine & Pharmacotherapy
researchProduct