Search results for "TRUS"
showing 10 items of 1249 documents
Mechatronic Design for an Extrusion-Based Additive Manufacturing Machine
2017
3D printers, especially in the implementation of innovative extrusion processes which do not have a long history of development, are often built by adapting mechanical designs, drives and controls previously developed for generic machine tools. This is done through a process of choice and integration which is based principally on empirical criteria and taking into account separately the different aspects and parameters. Hereafter, we present an integrated mechatronic approach which has been adopted to design from the scratch a machine to implement the innovative metal injection moulding (MIM) technology. Its extrusion rate involves the adaptation of the generated trajectories and consequent…
On the Heuristic Procedure to Determine Processing Parameters in Additive Manufacturing Based on Materials Extrusion
2020
We present a heuristic procedure for determining key processing parameters (PPs) in materials-extrusion-based additive manufacturing processes. The concept relies on a design-of-experiment approach and consists of eleven &ldquo
Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation
2017
Abstract Friction Stir Extrusion (FSE) is a novel process designed to directly recycle machining chips. An experimental campaign was carried out on AZ31 milling chips using variations in extrusion ratio, force and tool rotation rate. The process mechanics were studied and correlated to the material flow, which was elucidated through use of a copper marker. A 3D, Lagrangian, thermo-mechanically coupled dedicated numerical model was set up and validated through temperature measurements. The combination of experimental and numerical results permitted to reconstruct the complex 3D material flow induced by tool rotation and plunge into the extrusion billet chamber.
An Additive Model to Predict the Rheological and Mechanical Properties of Polypropylene Blends Made by Virgin and Reprocessed Components
2021
In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit fo…
A numerical model for Wire integrity prediction in Friction Stir Extrusion of magnesium alloys
2017
Abstract A numerical model for the prediction of the wire quality produced by the novel direct machining chip recycling technique known as Friction Stir Extrusion (FSE) is presented. Wire microstructure and wire integrity have been predicted by embedding in the code the equations enabling the calculation of the Zener-Hollomon parameter as well as the W parameter of the Pivnik-Plata solid bonding criterion. The proposed model, developed for the AZ31 magnesium alloy using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled with visco-plastic material behavior. The model was first validated against experimental temperature measurements and then used to predi…
Influence of processing parameters and initial temper on Friction Stir Extrusion of 2050 aluminum alloy
2017
Abstract Friction Stir Extrusion is an innovative production technology that enables direct wire production via consolidation and extrusion of metal chips or solid billets. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be extruded. The stirring action of the tool produces plastic flow in the extrusion chamber, densifying and heating the charge so that finally, fully dense rods are extruded. Experiments have been carried out in order to investigate the influence of process parameters and initial temper of the base material on the process variables and on the extrudates’ mechanical properties.
Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys
2016
Friction Stir Extrusion is an innovative direct-recycling technology for metal machining chips. During the process a specifically designed rotating tool is plunged into a cylindrical matrix containing the scraps to be recycled. The stirring action of the tool prompts solid bonding related phenomena allowing the back extrusion of a full dense rod. This process results to be particularly relevant because allows the reuse of the scrap without any previous treatment. Experiments have been carried out in order to investigate the influence of the process parameters on the extrudes quality and a numerical model has been developed in order to simulate the evolution of the material flow.
Design of continuous Friction Stir Extrusion machines for metal chip recycling: issues and difficulties
2018
Abstract Friction Stir Extrusion is an innovative direct-recycling technology developed for metal machining chips. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be recycled. The stirring action of the die prompts solid bonding phenomena allowing the back extrusion of a full dense rod. One of the main weakness of this technology is the discontinuity of the process itself that limits the extrudates volume to the capacity of the chamber. In order to overcome that limitation, a dedicated extrusion fixture has to be developed, keeping into account the concurrent needs of a continuous machine. The geometry of the die has to ensure proper press…
AZ31 magnesium alloy recycling through friction stir extrusion process
2015
Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…
Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization
2019
Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…