Search results for "Tag"

showing 10 items of 10735 documents

Radiation resistance of nanolayered silicon nitride capacitors

2020

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industry02 engineering and technologyDielectricChemical vapor deposition021001 nanoscience & nanotechnology01 natural sciencesCapacitancelaw.inventionchemistry.chemical_compoundCapacitorSilicon nitridechemistrylaw0103 physical sciencesOptoelectronicsBreakdown voltageIrradiation0210 nano-technologybusinessInstrumentationRadiation resistanceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The Acoustic Wave Behavior Within the PEA Cell for Space Charge Measurement

2018

In order to evaluate the acoustic wave behavior within the Pulsed Electro Acoustic (PEA) cell, a simulation model has been developed in this work. The model, implemented in Matlab environment, is based on the analogy between acoustic and electrical quantities. Therefore, it was possible to model the PEA cell as cascade connected lossy transmission lines. The model has been validated theoretically by making a comparison with a simulation result found in literature. The experimental validation has also been made by using the PEA cell of the LEPRE high voltage lab. In addition, four graphs have been realized. Two of them can be used to establish in easy and fast way to obtain the minimum groun…

010302 applied physicsPhysics021103 operations researchPEA methodAcousticsElectronic Optical and Magnetic Material0211 other engineering and technologiesPEA modelHigh voltage02 engineering and technologyAcoustic wave01 natural sciencesSignalSpace chargeSettore ING-IND/31 - ElettrotecnicaCascade0103 physical sciencesElectrodeReflection phenomenonReflection (physics)Electrical and Electronic EngineeringMATLABcomputercomputer.programming_language
researchProduct

The ${JV}$ -Characteristic of Intermediate Band Solar Cells With Overlapping Absorption Coefficients

2017

An analytic expression for the $\textit {JV}$ -characteristic of intermediate band (IB) solar cells with overlapping absorption coefficients is derived. The characteristic contains six voltage-independent parameters that are calculated from material properties, cell properties, and external conditions. Combined with exponential functions containing the cell voltage, these describe the full $\textit {JV}$ -characteristic. Expressions are also derived for the short-circuit current and open-circuit voltage. The model represents a major simplification compared with the existing model for this type of devices. The simplicity will facilitate the understanding of the operation of such cells. Furth…

010302 applied physicsPhysicsComputation02 engineering and technologyTrappingType (model theory)021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsExponential function0103 physical sciencesSpontaneous emissionElectrical and Electronic Engineering0210 nano-technologyAbsorption (electromagnetic radiation)Material propertiesVoltageIEEE Transactions on Electron Devices
researchProduct

An Analytic Approach to the Modeling of Multijunction Solar Cells

2020

Analytic expressions for the $JV$ -characteristics of three types of multijunction configurations are derived. From these, expressions for the short-circuit current, open-circuit voltage, and voltage at the maximum power point are found for multiterminal devices, and for series-connected tandem stacks. For voltage-matched devices, expressions for the optimal ratio of the number of bottom cells to the number of top cells are established. Luminescent coupling is incorporated throughout the article. It should be highlighted that the maximum power point of a series-connected tandem stack is described, with good accuracy for all interesting band gap combinations, by a single analytic expression.…

010302 applied physicsPhysicsCouplingMaximum power principleTandem02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsTopology01 natural sciencesElectronic Optical and Magnetic MaterialsStack (abstract data type)0103 physical sciencesLimit (music)Radiative transferEnergy transformationElectrical and Electronic Engineering0210 nano-technologyVoltageIEEE Journal of Photovoltaics
researchProduct

The Role of Right Interpretation of Space Charge Distribution for Optimized Design of HVDC Cables

2019

In the field of high-voltage transmission systems, different degradation phenomena affect the reliability of the employed components. In particular, under dc stress, the space charge accumulation phenomenon is believed to be the most responsible of the dielectrics lifetime reduction. To measure the accumulated space charges in flat specimens, the pulsed electro-acoustic (PEA) method is one of the most used techniques. The working principle of the PEA cell is based on the acoustic waves propagation and detection. As is well known, the acoustic waves propagating in different means are partially transmitted and partially reflected. Therefore, the piezoelectric sensor of the PEA cell is subject…

010302 applied physicsPhysicsField (physics)Piezoelectric sensorPEA method020208 electrical & electronic engineeringhigh-voltage direct-current (HVdc)Charge (physics)modeling02 engineering and technologyMechanicsAcoustic wave01 natural sciencesSpace chargeSignalFinite-difference time-domain (FDTD) methodIndustrial and Manufacturing EngineeringSettore ING-IND/31 - ElettrotecnicaControl and Systems Engineering0103 physical sciences0202 electrical engineering electronic engineering information engineeringReflection (physics)space chargeSurface chargeElectrical and Electronic Engineering
researchProduct

Efficiency of gyrotrons with a tapered magnetic field in the regime of soft self-excitation

2018

As a rule, gyrotron operation with high efficiency is realized in the regime of hard self-excitation that requires a special start-up scenario: either a tuning of the external magnetic field or providing certain relations between mod-anode and beam voltages. This paper describes a study of gyrotron operation in slightly tapered external magnetic fields. It is shown how the use of tapered magnetic fields affects the maximum efficiency realizable in hard and soft excitation regimes. First, a model of gyrotron with the Gaussian axial profile of the resonator field is studied. Then, a similar treatment is done for a realistic resonator designed for a 140 GHz Karlsruhe Institute for Technology g…

010302 applied physicsPhysicsField (physics)business.industryGaussianCondensed Matter Physics01 natural sciences010305 fluids & plasmaslaw.inventionMagnetic fieldResonatorsymbols.namesakeOpticsPhysics::Plasma PhysicslawGyrotron0103 physical sciencessymbolsbusinessExcitationBeam (structure)VoltagePhysics of Plasmas
researchProduct

Temperature Coefficients of Solar Cell Parameters at Maximum Power Point

2020

Analytical expressions for the temperature coefficients of the maximum power point voltage and current are presented. The temperature coefficients are calculated assuming the bandgap to be a linear function of the temperature and accounting for energy losses of non-radiative nature. The latter are introduced in the model through the External Radiative Efficiency. The so-called $\gamma$ parameter, which has been shown to account for the thermal sensitivity of all mechanisms determining the open-circuit voltage, appears to also play a role in the temperature coefficient of the maximum power point voltage and current. Numerical results and a comparison with experimental measurements are also p…

010302 applied physicsPhysicsMaximum power principle02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesTemperature measurementLinear functionlaw.inventionlaw0103 physical sciencesThermalSolar cellSensitivity (control systems)0210 nano-technologyTemperature coefficientVoltage2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
researchProduct

Towards quantum phase slip based standard of electric current

2019

An accurate standard of electric current is a long-standing challenge of modern metrology. It has been predicted that a superconducting nanowire in the regime of quantum fluctuations can be considered as the dynamic equivalent of a chain of conventional Josephson junctions. In full analogy with the quantum standard of electric voltage based on the Josephson effect, the quantum phase slip phenomenon in ultrathin superconducting nanowires could be used for building the quantum standard of electric current. This work presents advances toward this ultimate goal.

010302 applied physicsPhysicsSuperconductivityJosephson effectPhysics and Astronomy (miscellaneous)Condensed matter physicsNanowire02 engineering and technologyOtaNano021001 nanoscience & nanotechnology01 natural sciencesMetrologyCondensed Matter::Superconductivity0103 physical sciencesElectric current0210 nano-technologyQuantumQuantum fluctuationVoltage
researchProduct

A summary of expressions for central performance parameters of high efficiency solar cell concepts

2019

This work reviews expressions for central performance parameters of various types of PV-concepts when operating at the radiative limit. Some new expressions not published elsewhere are also included. The performance parameters include the short circuit current density, the open circuit voltage, the maximum power density and the optimal voltage. The cell concepts include single junction cells, cells optically coupled to up- and down-converters, intermediate band solar cells and a couple of implementations of multijunction devices. The Lambert W function is used to express the maximum power density.

010302 applied physicsPhysicsbusiness.industryOpen-circuit voltageSemiconductor device modeling02 engineering and technology021001 nanoscience & nanotechnologySolar energyTopology01 natural scienceslaw.inventionsymbols.namesakelawLambert W function0103 physical sciencesSolar cellsymbolsEnergy transformation0210 nano-technologybusinessShort circuitVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Effect of Polarity Reversal on the Partial Discharge Phenomena

2020

In the field of High Voltage Direct Current (HVDC) transmission, the space charge accumulation phenomenon and the Partial Discharges (PD) phenomena are considered the main causes of dielectric ageing. During the years, the degradation effect of both phenomena under constant DC stress has been widely studied by several researchers. In case of polarity reversal, typically carried out to control bi-directional power flow between interconnected High Voltage transmission systems, the space charge movement may not synchronously follow the electric field polarity. This could make the moment of reversing polarity a very critical one, where space charge injected during preceding polarity produces hi…

010302 applied physicsPolarity reversalMaterials scienceHVDCPolarity (physics)polarity reversalHigh voltage02 engineering and technologyMechanicsDielectric021001 nanoscience & nanotechnology01 natural sciencesSpace chargeElectric fieldPartial discharge0103 physical sciencesPartial dischargePryCamHigh-voltage direct current0210 nano-technologyAir void
researchProduct