Search results for "Tea"
showing 10 items of 7074 documents
Bistacrine derivatives as new potent antimalarials
2016
Linking two tacrine molecules results in a tremendous increase of activity against Plasmodia in comparison to the monomer. This finding prompted the synthesis of a library of monomeric and dimeric tacrine derivatives in order to derive structure-activity relationships. The most active compounds towards chloroquine sensitive Plasmodium strain 3D7 and chloroquine resistant strain Dd2 show IC50 values in the nanomolar range of concentration, low cytotoxicity and target the cysteine protease falcipain-2, which is essential for parasite growth.
Betulinic Acid Kills Colon Cancer Stem Cells
2016
Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad acting natural compound, shown to induce cell death via the inhibition of the stearoyl-CoA- desaturase (SCD- 1). This enzyme converts saturated fatty acids into unsaturated fatty acids and is over-expressed in tumor cells. Here we show that BetA induces rapid cell death in all colon CSCs tested and is able to affect the CSCs directly as shown, via the loss of clonogenic capacity. Similar results were…
Computational analysis of macrolides as SARS-CoV-2 main protease inhibitors: a pattern recognition study based on molecular topology and validated by…
2021
Since the outbreak of the current SARS-CoV-2 pandemic, much has been discussed about the effectiveness of treatments based on hydroxychloroquine combined with azithromycin or another macrolide. However, few articles have dealt with the possibility of using macrolides alone in treating the disease. In the present article, the authors' hypothesis centers on the possibility that macrolides are effective against SARS-CoV-2 by inhibiting the virus protease. In support of this hypothesis, significant results are collected by following an in silico strategy based on a combination of molecular topology and docking. The results are in accordance with recent clinical data generated during the pandemi…
Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein.
2018
Abstract Vip3 proteins are secretable proteins from Bacillus thuringiensis with important characteristics for the microbiological control of agricultural pests. The exact details of their mode of action are yet to be disclosed and the crystallographic structure is still unknown. Vip3 proteins are expressed as protoxins that have to be activated by the insect gut proteases. A previous study on the peptidase processing of Vip3Aa revealed that the protoxin produced artefactual band patterns by SDS-PAGE due to the differential stability of this protein and the peptidases to SDS and heating (Bel et al., 2017 Toxins 9:131). To determine whether this phenomenon also applies to other Vip3A proteins…
2017
Epidermal growth factor receptor (EGFR) and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM), the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM) through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might off…
Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor.
2018
: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia …
Protease‐activated receptor signaling in intestinal permeability regulation
2019
Protease-activated receptors (PARs) are a unique class of G-protein-coupled transmembrane receptors, which revolutionized the perception of proteases from degradative enzymes to context-specific signaling factors. Although PARs are traditionally known to affect several vascular responses, recent investigations have started to pinpoint the functional role of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed to the highest number of proteases, either from the gut lumen or from the mucosa. Luminal proteases include the host's digestive enzymes and the proteases released by the commensal microbiota, while mucosal proteases entail extravascular clotting factors and the enzy…
Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases
2019
AbstractVertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibito…
Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis
2017
Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed t…
Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis i…
2018
Abstract Bacillus thuringiensis Vip3 proteins are synthesized and secreted during the vegetative growth phase. They are activated by gut proteases, recognize and bind to midgut receptors, form pores and lyse cells. We tested the susceptibility to Vip3Aa and Vip3Ca of Cry1A-, Cry2A-, Dipel- and Vip3-resistant insect colonies from different species to determine whether resistance to other insecticidal proteins confers cross-resistance to Vip3 proteins. As expected, the colonies resistant to Cry1A proteins, Dipel (Helicoverpa armigera, Trichoplusia ni, Ostrinia furnacalis and Plodia interpunctella) or Cry2Ab (H. armigera and T. ni) were not cross-resistant to Vip3 proteins. In contrast, H. arm…