Search results for "Tea"

showing 10 items of 7074 documents

Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei

2016

A series of dipeptide nitriles known as inhibitors of mammalian cathepsins were evaluated for inhibition of rhodesain, the cathepsin L-like protease of Trypanosoma brucei. Compound 35 consisting of a Leu residue fitting into the S2 pocket and a triarylic moiety consisting of thiophene, a 1,2,4-oxadiazole and a phenyl ring fitting into the S3 pocket, and compound 33 with a 3-bromo-Phe residue (S2) and a biphenyl fragment (S3) were found to inhibit rhodesain in the single-digit nanomolar range. The observed steep structure-activity relationship could be explained by covalent docking simulations. With their high selectivity indices (ca. 200) and the good antitrypanosomal activity (8μM) the com…

0301 basic medicineStereochemistrymedicine.medical_treatmentTrypanosoma brucei bruceiClinical BiochemistryAntitubercular AgentsPharmaceutical ScienceCysteine Proteinase InhibitorsTrypanosoma bruceiBiochemistryCysteine Proteinase InhibitorsStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundNitrilesDrug DiscoverymedicineStructure–activity relationshipMoietyMolecular BiologyProteaseDipeptideDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryDipeptidesbiology.organism_classificationCysteine proteaseCysteine Endopeptidases030104 developmental biologyDocking (molecular)Molecular MedicineBioorganic & Medicinal Chemistry Letters
researchProduct

Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery

2020

Cathepsin S (CatS) is a secreted cysteine protease that cleaves certain extracellular matrix proteins, regulates antigen presentation in antigen-presenting cells (APC), and promotes M2-type macrophage and dendritic cell polarization. CatS is overexpressed in many solid cancers, and overall, it appears to promote an immune-suppressive and tumor-promoting microenvironment. While most data suggest that CatS inhibition or knockdown promotes anti-cancer immunity, cell-specific inhibition, especially in myeloid cells, appears to be important for therapeutic efficacy. This makes the design of CatS selective inhibitors and their targeting to tumor-associated M2-type macrophages (TAM) and DC an attr…

0301 basic medicineT-Lymphocytesmedicine.medical_treatmentReview02 engineering and technologyCancer immunotherapyNeoplasmsTumor-Associated MacrophagesTumor Microenvironmentcysteine proteaseMolecular Targeted TherapySulfoneslcsh:QH301-705.5Cathepsin SAntigen PresentationDrug Carrierscysteine cathepsintumor-associated macrophage (TAM)ChemistrynanoparticleAzepinesDipeptidesGeneral Medicine021001 nanoscience & nanotechnologyGene Expression Regulation NeoplasticImmunotherapy0210 nano-technologydendritic cellAntigen presentationAntineoplastic AgentsTumor-associated macrophageM2 macrophage03 medical and health sciencesLeucinemedicineHumansProtease InhibitorsAntigen-presenting celltargetingtherapypolarizationTumor microenvironmentT cellDendritic CellsDendritic cellextracellular matrix (ECM)Cathepsinstumor associated macrophage030104 developmental biologylcsh:Biology (General)antigen presenting cellCancer researchNanoparticlesimmune suppressionNanocarriers
researchProduct

Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer

2016

Background & Aims Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. Methods We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan–Meier curves. We analyze…

0301 basic medicineTime FactorsMuscle ProteinsKaplan-Meier Estimatemedicine.disease_causeChromosome instabilityYAP1Liver NeoplasmsGastroenterologyTEA Domain Transcription FactorsHep G2 CellsPrognosisDNA-Binding ProteinsGene Expression Regulation NeoplasticPhenotypeHippo signalingRNA InterferenceSignal TransductionCarcinoma HepatocellularPorphyrinsAntineoplastic AgentsMice TransgenicBiologyTransfection03 medical and health sciencesChromosomal InstabilitymedicineAnimalsHumansGene silencingGenetic Predisposition to DiseaseAdaptor Proteins Signal TransducingHippo signaling pathwayHepatologyGene Expression ProfilingForkhead Box Protein M1VerteporfinYAP-Signaling ProteinsHCCSPhosphoproteinsThiostreptonMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyTissue Array AnalysisFOXM1Cancer researchTranscriptomeCarcinogenesisTranscription FactorsGastroenterology
researchProduct

Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing

2016

The capacity of human hepatic cell-based models to predict hepatotoxicity depends on the functional performance of cells. The major limitations of human hepatocytes include the scarce availability and rapid loss of the hepatic phenotype. Hepatoma cells are readily available and easy to handle, but are metabolically poor compared with hepatocytes. Recently developed human upcyte hepatocytes offer the advantage of combining many features of primary hepatocytes with the unlimited availability of hepatoma cells. We analyzed the phenotype of upcyte hepatocytes comparatively with HepG2 cells and adult primary human hepatocytes to characterize their functional features as a differentiated hepatic …

0301 basic medicineTime FactorsPrimary Cell CultureTransfectionToxicologyRisk AssessmentTranscriptome03 medical and health sciences0302 clinical medicineMetabolomicsCytochrome P-450 Enzyme SystemIn vivoToxicity TestsmedicineHumansChildGlycogen synthaseDose-Response Relationship DrugbiologyInfant NewbornCytochrome P450Hep G2 CellsMiddle Agedmedicine.diseasePhenotypeHigh-Throughput Screening AssaysIsoenzymesOxidative StressPhenotype030104 developmental biologyGene Expression RegulationLiver030220 oncology & carcinogenesisHepatocytesbiology.proteinHepatic stellate cellCancer researchChemical and Drug Induced Liver InjurySteatosisTranscriptomeToxicological Sciences
researchProduct

2 H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design.

2018

Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition (Ki values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (I…

0301 basic medicineTrypanosoma brucei rhodesienseStereochemistrySwineTrypanosoma cruziPlasmodium falciparumTriazoleProtozoan ProteinsCysteine Proteinase InhibitorsLigands01 natural sciencesCysteine Proteinase InhibitorsCell LineCathepsin L03 medical and health scienceschemistry.chemical_compoundMiceStructure-Activity RelationshipIn vivoDrug DiscoveryNitrilesStructure–activity relationshipAnimalsHumansATP Binding Cassette Transporter Subfamily B Member 1Trypanocidal agentBinding SitesbiologyMolecular Structure010405 organic chemistryChemistryTrypanosoma brucei rhodesienseDipeptidesTriazolesCysteine proteaseTrypanocidal Agents0104 chemical sciencesRatsCysteine Endopeptidases030104 developmental biologyDrug Designbiology.proteinMicrosomes LiverMolecular MedicineFemaleLeishmania donovaniJournal of medicinal chemistry
researchProduct

Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis

2020

International audience; Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring matur…

0301 basic medicine[SDV]Life Sciences [q-bio]OntogenyMESH: Cell Self RenewalSelf renewalMESH: MonocytesMESH: Mice KnockoutMice0302 clinical medicineNon-alcoholic Fatty Liver DiseaseImmunology and AllergyKupffer cellsMESH: AnimalsCell Self RenewalMESH: Lipid MetabolismMice KnockoutKupffer cellLipidsResearch Highlightmacrophages[SDV] Life Sciences [q-bio]Infectious Diseasesmedicine.anatomical_structureLiver030220 oncology & carcinogenesismonocytesmedicine.medical_specialtynon-alcoholic steatohepatitis (NASH)ImmunologyBiology03 medical and health sciencesMESH: Mice Inbred C57BLMESH: Cell ProliferationInternal medicinemedicineAnimalsLiver damageMESH: MiceCell ProliferationMESH: Non-alcoholic Fatty Liver DiseaseTriglyceride storageNon alcoholicLipid Metabolismmedicine.diseaseMESH: Lipidseye diseasesMice Inbred C57BLMESH: Kupffer Cells030104 developmental biologyEndocrinologySteatohepatitisHomeostasisMESH: LiverImmunity
researchProduct

Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2

2017

BACE1 was discovered as the β-secretase for initiating the cleavage of amyloid precursor protein (APP) at the β-secretase site, while its close homology BACE2 cleaves APP within the β-amyloid (Aβ) domain region and shows distinct cleavage preferences in vivo. Inhibition of BACE1 proteolytic activity has been confirmed to decrease Aβ generation and amyloid deposition, and thus specific inhibition of BACE1 by small molecules is a current focus for Alzheimer’s disease therapy. While BACE1 inhibitors are being tested in advanced clinical trials, knowledge regarding the properties and physiological functions of BACE is highly important and this review summarizes advancements in BACE1 research ov…

0301 basic medicineamyloid plaquessecretaseReviewamyloid precursor proteinBiology03 medical and health sciencesCellular and Molecular Neurosciencemental disordersAmyloid precursor proteinaspartic proteaseBACE substratesGlucose homeostasisMolecular Biologychemistry.chemical_classificationNeurogenesisBACE2P3 peptideBACE1Biochemistry of Alzheimer's disease030104 developmental biologyEnzymechemistryBiochemistrySynaptic plasticitybiology.proteinAmyloid precursor protein secretaseAlzheimer’s diseaseNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Novel Modulators of Proteostasis: RNAi Screen of Chromosome I in a Heat Stress Paradigm in C. elegans

2018

Proteostasis is of vital importance for cellular function and it is challenged upon exposure to acute or chronic insults during neurodegeneration and aging. The proteostasis network is relevant for the maintenance of proteome integrity and mainly comprises molecular chaperones and two degradation pathways, namely, autophagy and the ubiquitin proteasome system. This network is characterized by an impressive functional interrelation and complexity, and occasionally novel factors are discovered that modulate proteostasis. Here, we present an RNAi screen in C. elegans, which aimed to identify modulators of proteostasis in a heat stress paradigm. The screen comprised genes that are located on ch…

0301 basic medicineautophagyproteostasis networkUPSArticle03 medical and health sciences0302 clinical medicinemedicinechaperonelcsh:QH301-705.5GeneRNAi screenGene knockdownproteostasisbiologyAutophagyNeurodegenerationneurodegenerationGeneral Medicinemedicine.diseaseCell biology030104 developmental biologyProteostasislcsh:Biology (General)ProteasomeChaperone (protein)Proteomebiology.proteinC. elegans<i>C. elegans</i>; RNAi screen; proteostasis; proteostasis network; autophagy; UPS; chaperone; neurodegeneration030217 neurology & neurosurgeryCells
researchProduct

Targeting of the Leishmania Mexicana cysteine protease CPB2.8 ΔCTE by decorated fused benzo[b] thiophene scaffold.

2016

A potent and highly selective anhydride-based inhibitor of Leishmania mexicana cysteine protease CPB2.8ΔCTE (IC50 = 3.7 μM) was identified. The details of the interaction of the ligand with the enzyme active site were investigated by NMR biomimetic experiments and docking studies. Results of inhibition assays, NMR and theoretical studies indicate that the ligand acts initially as a non-covalent inhibitor and later as an irreversible covalent inhibitor by chemoselective attack of CYS 25 thiolate to an anhydride carbonyl.

0301 basic medicinebiology010405 organic chemistryChemistryStereochemistryGeneral Chemical EngineeringActive siteGeneral ChemistryHighly selectivebiology.organism_classification01 natural sciencesCysteine proteaseLeishmania mexicana0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCovalent bondDocking (molecular)biology.proteinThiopheneDRUG DISCOVERY SOFTWARE NEWS FORCE-FIELD CATHEPSIN-L INHIBITORS OPTIMIZATION TRYPANOSOMIASIS IDENTIFICATION PROTEINASES VALIDATIONIC50
researchProduct

Both Phenolic and Non-phenolic Green Tea Fractions Inhibit Migration of Cancer Cells.

2016

Green tea consumption is associated with chemoprevention of many cancer types. Fresh tea leaves are rich in polyphenolic catechins, which can constitute up to 30% of the dry leaf weight. While the polyphenols of green tea have been well investigated, it is still largely unknown, whether or not non-phenolic constituents also reveal chemopreventive and anti-metastatic effects. In this study, we investigated the effects of a fraction of green tea rich in phenolic compounds (PF), a non-phenolic fraction (NPF), which contains glyceroglycolipids (GGL), and a pure glyceroglycolipid compound isolated from the non-phenolic fraction in human cancer. Dried green tea leaves were extracted and applied t…

0301 basic medicinegreen tea03 medical and health sciences0302 clinical medicinenutrigenomicschemopreventionPharmacology (medical)TheaceaeCytotoxicityIC50Original ResearchPharmacologybiologyChemistrylcsh:RM1-950food and beveragesbiology.organism_classificationIn vitro030104 developmental biologylcsh:Therapeutics. PharmacologyBiochemistryCell culturePolyphenolSephadex030220 oncology & carcinogenesisCancer cellmicroarraytheaceaeFrontiers in pharmacology
researchProduct