Search results for "Tectonophysics"

showing 4 items of 4 documents

Constraining effective rheology through parallel joint geodynamic inversion

2014

Abstract The dynamics of crust and lithosphere is to a large extent controlled by its effective viscosity. Unfortunately, extrapolation of laboratory experiments indicates that viscosity is likely to vary over many orders of magnitude. Additional methods are thus required to constrain the effective viscosity of the present-day lithosphere using more direct geophysical observations. Here we discuss a method, which couples 3D geodynamic models with observations (surface velocities and gravity anomalies) and with a Bayesian inversion scheme on massively parallel high performance computers. We illustrate that the basic principle of a joint geodynamic and gravity inversion works well with a simp…

ExtrapolationInversion (meteorology)CrustGeophysicsGeodynamicsParameter spaceGravity anomalyPhysics::GeophysicsGeophysics13. Climate actionLithosphereTectonophysicsGeologyEarth-Surface ProcessesTectonophysics
researchProduct

Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID‐19

2021

Abstract The COVID‐19 pandemic led to a 72% reduction of air traffic over Europe in March–August 2020 compared to 2019. Modeled contrail cover declined similarly, and computed mean instantaneous radiative contrail forcing dropped regionally by up to 0.7 W m−2. Here, model predictions of cirrus optical thickness and the top‐of‐atmosphere outgoing longwave and reflected shortwave irradiances are tested by comparison to Meteosat‐SEVIRI‐derived data. The agreement between observations and modeled data is slightly better when modeled contrail cirrus contributions are included. The spatial distributions and diurnal cycles of the differences in these data between 2019 and 2020 are partially caused…

Atmospheric Science010504 meteorology & atmospheric sciencesPollution: Urban Regional and GlobalcirrusForcing (mathematics)Atmospheric Composition and Structure010502 geochemistry & geophysicsAtmospheric sciencesBiogeosciences01 natural sciencesOceanography: Biological and ChemicalCloud/Radiation InteractionRadiative transferWolkenphysikInstitut für Physik der AtmosphäreMarine PollutioncontrailOceanography: GeneralGeophysicsPollution: Urban and RegionalAtmospheric ProcessesCirrusClouds and AerosolssatelliteMegacities and Urban Environmentcontrail aircraft climate observation model traffic Meteosat CoCiPRadiation: Transmission and ScatteringAtmospherePaleoceanographyEvolution of the EarthCOVID‐19Research LetterGlobal ChangeBiosphere/Atmosphere InteractionsUrban Systems0105 earth and related environmental sciencesEvolution of the AtmosphereAerosolsradiative forcingVerkehrsmeteorologieAtmosphereLongwaveAtmosphärische SpurenstoffeRadiative forcingAerosols and ParticlesNumerical weather predictionTectonophysicsaviationGeneral Earth and Planetary SciencesEnvironmental scienceShortwaveNatural HazardsGeophysical Research Letters
researchProduct

Fabric Development in Gneiss Terrains

1990

This chapter describes some aspects of the development of fabrics in gneiss terrains. It provides essential background information that should be read before attempting to map a gneiss terrain. Inevitably, the interpretations are ‘state of the art’ and not necessarily the absolute answer. Additional information can be found in the cited literature and various specialised journals such as the Journal of Structural Geology, the Journal of Metamorphic Geology, Tectonophysics, Tectonics and Precambrian Research.

TectonicsPrecambrianEarth scienceMetamorphic rockTectonophysicsTerrainShear zoneStructural geologyPetrologyGeologyGneiss
researchProduct

Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring.

2016

Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are acc…

Geologicalexplosive eruptionhydrothermal systemSubduction Zone ProcessesVolcanologyMarine Geology and GeophysicsVolcano Seismologyphreatomagmatic eruptionVolcano MonitoringVolcanic GasesGeochemistryTectonophysicsExplosive Volcanismphreatic eruptionChemistry and Physics of Minerals and Rocks/VolcanologyNatural HazardsSeismologyResearch ArticlesMineralogy and PetrologyResearch ArticleJournal of geophysical research. Solid earth
researchProduct