Search results for "Teleportation"

showing 10 items of 60 documents

Entanglement replication in driven-dissipative many body systems

2012

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

Quantum decoherenceFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementquantum networksSquashed entanglement01 natural sciences010305 fluids & plasmasOPERATIONSQUANTUM COMPUTATION0103 physical sciencesCAVITY ARRAYS010306 general physicsTELEPORTATIONQuantum computerPhysicsQuantum PhysicsNANOCAVITIESCANNOTentanglement quantum networks open quantum systems.open quantum systemsQuantum PhysicsCondensed Matter - Other Condensed MatterArbitrarily largeLIGHTClassical mechanicsTRAPPED IONSPHOTONDissipative systemW stateentanglementQuantum Physics (quant-ph)MATTERQuantum teleportationOther Condensed Matter (cond-mat.other)
researchProduct

Standard forms and entanglement engineering of multimode Gaussian states under local operations

2007

We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parametres which completely characterise the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parametre reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particula…

Statistics and ProbabilitySchmidt decompositionGaussianGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementUnitary statesymbols.namesakeSYSTEMSFOS: MathematicsCONTINUOUS-VARIABLESStatistical physicsQuantum informationMathematical PhysicsMathematicsQuantum PhysicsCovariance matrixStatistical and Nonlinear PhysicsInvariant (physics)QUANTUM TELEPORTATION NETWORKMathematics - Symplectic GeometryModeling and SimulationPhase spacesymbolsSymplectic Geometry (math.SG)Quantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct

Irreversible decay of nonlocal entanglement via a reservoir of a single degree of freedom.

2007

Recently, it has been realized that nonlocal disentanglement may take a finite time as opposite to the asymptotic decay of local coherences. We find in this paper that a sudden irreversible death of entanglement takes place in a two atom optical Stern-Gerlach model. In particular, the one degree non dissipative environment here considered suddenly destroys the initial entanglement of any Bell's states $\ket{\phi^{\pm}}$ superposition.

PhysicsQuantum PhysicsBell stateQuantum discordQuantum decoherenceFOS: Physical sciencesQuantum entanglementQuantum PhysicsSquashed entanglementAtomic and Molecular Physics and OpticsLocal hidden variable theoryClassical mechanicsQuantum mechanicsQubitQuantum Physics (quant-ph)Quantum teleportation
researchProduct

On-chip generation of high-dimensional entangled quantum states and their coherent control

2017

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the co…

Quantum opticFiber optics communicationQuantum imaging01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpen quantum systemQC350Quantum mechanics0103 physical sciencesQuantum information010306 general physicsQuantum information scienceQCSingle photons and quantum effectQuantum computerPhysicsQuantum networkMultidisciplinaryTheoryofComputation_GENERALIntegrated opticSettore ING-INF/02 - Campi ElettromagneticiQuantum PhysicsQC0350Quantum technologyPhotonicsQuantum teleportation
researchProduct

Dynamics of Non Classically Reproducible Entanglement

2008

We investigate when the quantum correlations of a bipartite system, under the influence of environments with memory, are not reproducible with certainty by a classical local hidden variable model. To this purpose, we compare the dynamics of a Bell inequality with that of entanglement, as measured by concurrence. We find time regions when Bell inequality is not violated even in correspondence to high values of concurrence (up to $\approx 0.8$). We also suggest that these results may be observed by adopting a modification of a recent experimental optical setup. These findings indicate that even highly entangled systems cannot be exploited with certainty in contexts where the non classical rep…

PhysicsQuantum PhysicsBell stateSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciQuantum correlationCHSH inequalityFOS: Physical sciencesQuantum entanglementAtomic and Molecular Physics and OpticsQuantum nonlocalityLocal hidden variable theoryQuantum mechanicsBell test experimentsQuantum Physics (quant-ph)Quantum teleportationNon-locality entanglement Bell inequality open quantum systems
researchProduct

Dynamics and extraction of quantum discord in a multipartite open system

2011

We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.

dynamics of quantum correlations; extraction of quantum correlations; Multipartite open quantum systems; Physics and Astronomy (miscellaneous)PhysicsQuantum PhysicsQuantum networkQuantum discordPhysics and Astronomy (miscellaneous)dynamics of quantum correlationCluster stateCavity quantum electrodynamicsPhysics::OpticsFOS: Physical sciencesMultipartite open quantum systems; dynamics of quantum correlations; extraction of quantum correlationsQuantum Physicsextraction of quantum correlationsSettore FIS/03 - Fisica Della MateriaMultipartite open quantum systemsQuantum technologyOpen quantum systemdynamics of quantum correlationsMultipartite open quantum systemQuantum mechanicsPhysics::Accelerator PhysicsW stateQuantum Physics (quant-ph)Quantum teleportation
researchProduct

Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.

2014

The continuous-variable teleportation of a discrete-variable, photonic qubit is deterministic and allows for faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits, the overall transfer fidelities all exceed the classical limit of teleportation. Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of Nature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda et al. describe the experimental realization of fully determinist…

PhysicsQuantum networkBell stateQuantum PhysicsMultidisciplinaryFOS: Physical sciencesQuantum channelQuantum PhysicsQuantum energy teleportationComputer Science::Emerging TechnologiesSuperdense codingQubitQuantum mechanicsNo-teleportation theoremQuantum Physics (quant-ph)Quantum teleportationNature
researchProduct

Quantum benchmark for teleportation and storage of squeezed states.

2007

We provide a quantum benchmark for teleportation and storage of single-mode squeezed states with zero displacement and a completely unknown degree of squeezing along a given direction. For pure squeezed input states, a fidelity higher than 81.5% has to be attained in order to outperform any classical strategy based on an estimation of the unknown squeezing and repreparation of squeezed states. For squeezed thermal input states, we derive an upper and a lower bound on the classical average fidelity which tighten for moderate degree of mixedness. These results enable a critical discussion of recent experiments with squeezed light.

PhysicsCondensed Matter::Quantum GasesQuantum Physicsmedia_common.quotation_subjectGeneral Physics and AstronomyFidelityFOS: Physical sciencesQuantum PhysicsUpper and lower boundsTeleportationDisplacement (vector)Quantum mechanicsBenchmark (computing)Quantum information scienceQuantum Physics (quant-ph)QuantumSqueezed coherent statemedia_commonPhysical review letters
researchProduct

Indistinguishability as a quantum information resource by localized measurements

2019

Quantum networks are typically made of identical subsystems. Exploiting indistinguishability as a direct quantum resource would thus be highly desirable. We show this is achievable by spatially localized measurements, enabling teleportation and entanglement swapping protocols.

Quantum networkPhotonQuantum informationComputer scienceTheoryofComputation_GENERALQuantum PhysicsQuantum channelQuantum entanglementTopologyTeleportationSettore FIS/03 - Fisica Della MateriaEntanglementQuantum measurementIdentical particleQuantum informationQuantumQuantum teleportation
researchProduct

Spin chains for two-qubit teleportation

2019

Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is able to sustain the generation of two pairs of Bell states - possibly shared between a sender and a distant receiver - which can in turn enable two-qubit teleportation. In particular, we address a spin-1/2 chain with XX interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has vanishing inf…

PhysicsQuantum PhysicsSpinsmedia_common.quotation_subjectQuantum communication Quantum entanglement Quantum teleportation 1-dimensional spin chains Quantum InformationFidelityFOS: Physical sciencesQuantum entanglementQuantum Physics01 natural sciencesTeleportationNatural dynamics010305 fluids & plasmasCondensed Matter - Other Condensed Mattersymbols.namesakeQuantum mechanicsQubit0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Quantum teleportationmedia_commonOther Condensed Matter (cond-mat.other)
researchProduct