Search results for "Temozolomide"
showing 10 items of 58 documents
Deletion of 11q in Neuroblastomas Drives Sensitivity to PARP Inhibition
2017
AbstractPurpose: Despite advances in multimodal therapy, neuroblastomas with hemizygous deletion in chromosome 11q (20%–30%) undergo consecutive recurrences with poor outcome. We hypothesized that patients with 11q-loss may share a druggable molecular target(s) that can be exploited for a precision medicine strategy to improve treatment outcome.Experimental Design: SNP arrays were combined with next-generation sequencing (NGS) to precisely define the deleted region in 17 primary 11q-loss neuroblastomas and identify allelic variants in genes relevant for neuroblastoma etiology. We assessed PARP inhibitor olaparib in combination with other chemotherapy medications using both in vitro and in v…
Pyrrolotetrazinones deazaanalogues of temozolomide induce apoptosis in Jurkat cell line: involvement of tubulin polymerization inhibition.
2009
Pyrrolotetrazinones are a new class of azolotetrazinones endowed with a high, remarkable antiproliferative activity in human tumor cultured cells. They hold the deaza skeleton of the antitumor drug temozolomide, although preliminary investigations indicated a different mechanism of action. To understand their mechanism(s) of action along with their target at molecular level, four derivatives were selected on the basis of their activity on a panel of human tumor cell lines and they were investigated in depth in a T leukemia cell line (Jurkat). Flow cytometric analysis of cell cycle after treatment with pyrrolotetrazinones has demonstrated that they were able to induce an arrest of the cell c…
Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma
2017
Objective To determine if perfusion in surgical cavity wall enhancement (SCWE) obtained in early post-treatment MR imaging can stratify time-to-progression (TTP) in glioblastoma. Materials and methods This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL). The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability…
Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain
2012
Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood–brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3–12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesized that chemotherapy disrupts learning via decreases in hippocampal adult…
Peptide Receptor Radionuclide Therapy Combined With Chemotherapy in Patients With Neuroendocrine Tumors
2019
Combinations of therapies may enhance therapeutic effects without significantly increasing the incidence of adverse events. However, there are few data regarding survival after concomitant chemotherapy and peptide receptor radionuclide therapy (PRRT) with [Lu]Lu-octreotate in patients with neuroendocrine tumors (NETs). Thus, we explored the outcome of this combination of therapies.Fifteen patients with somatostatin receptor-positive, rapidly progressive G2/G3 NETs during chemotherapy or PRRT alone from 2 German cancer centers were included in the retrospective analysis. The patients received a combination of PRRT and chemotherapy with temozolomide (n = 3) or temozolomide plus capecitabine (…
2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy
2012
Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells bef…
Xrcc2 deficiency sensitizes cells to apoptosis by MNNG and the alkylating anticancer drugs temozolomide, fotemustine and mafosfamide
2006
DNA double-strand breaks (DSBs) are potent killing lesions, and inefficient repair of DSBs does not only lead to cell death but also to genomic instability and tumorigenesis. DSBs are repaired by non-homologous end-joining and homologous recombination (HR). A key player in HR is Xrcc2, a Rad51-like protein. Cells deficient in Xrcc2 are hypersensitive to X-rays and mitomycin C and display increased chromosomal aberration frequencies. In order to elucidate the role of Xrcc2 in resistance to anticancer drugs, we compared Xrcc2 knockout (Xrcc2-/-) mouse embryonic fibroblasts with the corresponding isogenic wild-type and Xrcc2 complemented knockout cells. We show that Xrcc2-/- cells are hypersen…
Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine
2006
Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumours (malignant gliomas). The mechanism of TMZ-induced glioma cell death is unknown. Here, we show that malignant glioma cells undergo apoptosis following treatment with the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and TMZ. Cell death determined by colony formation and apoptosis following methylation is greatly stimulated by p53. Transfection experiments with O(6)-methylguanine-DNA methyltransferase (MGMT) and depletion of MGMT by O(6)-benzylguanine showed that, in gliomas, the apoptotic signal originates from O(6)-methylguanine (O(6)MeG) and that repair of O(6)MeG by MGMT prevent…
O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells
2006
Temozolomide (TMZ) is a methylating agent which prolongs survival when administered during and after radiotherapy in the first-line treatment of glioblastoma and which also has significant activity in recurrent disease. O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme attributed a role in cancer cell resistance to O6-alkylating agent-based chemotherapy. Using a panel of 12 human glioma cell lines, we here defined the sensitivity to TMZ in acute cytotoxicity and clonogenic survival assays in relation to MGMT, mismatch repair and p53 status and its modulation by dexamethasone, irradiation and BCL-X(L). We found that the levels of MGMT expression were a major predictor of T…
Inhibition of O6-Methylguanine-DNA Methyltransferase by Glucose-Conjugated Inhibitors: Comparison with Nonconjugated Inhibitors and Effect on Fotemus…
2004
The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is an important suicide enzyme involved in the defense against O(6)-alkylating mutagens. It also plays a role in the resistance of tumors to anticancer drugs targeting the O(6)-position of guanine, such as temozolomide and fotemustine. Several potent MGMT inhibitors have been developed sensitizing cells to O(6)-alkylating agents. Aimed at targeting MGMT inhibitors to tumor cells, we synthesized MGMT inhibitory compounds conjugated with glucose to improve uptake in tumor cells. Here, we compared O(6)-benzylguanine, O(6)-2-fluoropyridinylmethylguanine (O(6)FPG), O(6)-3-iodobenzylguanine, O(6)-4-bromothenylguanine, and O(6)…