Search results for "Tetrahedron"
showing 10 items of 75 documents
Coupled-Cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster
2011
Abstract Ab initio Coupled-Cluster calculations with single and double excitations and perturbative correction to the triple, CCSD(T), have been carried out for the high-spin electronic state, ( 5 A 2 ) , of the copper cluster Cu 4 in its tetrahedral arrangement. Like alkali metals clusters, tetrahedral Cu 4 presents a bound quintet state, i.e., a situation where all the valence electrons are unpaired. This rather exotic wavefunction, also known as no-pair bonding state, is examined in detail. The influence of the basis set is also analyzed, as well as the importance of the core correlation and the effect of the basis-set superposition errors.
Self-assembly of M4L4tetrahedral cages incorporating pendant PS and PSe functionalised ligands
2019
Herein, the synthesis of metal–organic tetrahedral cages featuring flexible thio- and selenophosphate-based ligands is described. The cages were prepared by sub-component self-assembly of AP(OC6H4NH2-4)3 (A = S, Se) or SP(SC6H4NH2-4)3, 2-pyridinecarboxaldehyde, and either Fe[BF4]2 or Co[BF4]2. Preliminary host–guest studies into the ability of the pendant PS and PSe groups to interact with suitable substrates will be discussed.
Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear CoII Compounds
2017
A family of tetrahedral mononuclear CoII complexes with the cytosine nucleobase ligand is used as the playground for an in-depth study of the effects that the nature of the ligand, as well as their noninnocent distortions on the Co(II) environment, may have on the slow magnetic relaxation effects. Hence, those compounds with greater distortion from the ideal tetrahedral geometry showed a larger-magnitude axial magnetic anisotropy (D) together with a high rhombicity factor (E/D), and thus, slow magnetic relaxation effects also appear. In turn, the more symmetric compound possesses a much smaller value of the D parameter and, consequently, lacks single-ion magnet behavior.
Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks
2020
A set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end-member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system Na (Formula presented.) O–CaO–K (Formula presented.) O–FeO–MgO–Al (Formula presented.) O (Formula presented.) –SiO (Formula presented.) –H (Formula presented.) O–TiO (Formula presented.) –Fe (Formula presented.) O (Formula presented.). In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic compo…
Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds
2016
We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used P…
Magic triangular and tetrahedral clusters
1997
Using the methods of density functional theory and the jellium model we show that clusters with triangular [in two dimensions (2D)] or tetrahedral [in three dimensions (3D)] shapes have a strong shell structure and enhanced stability. Moreover, the shell closings correspond to the lowest magic numbers of a 2D and 3D harmonic oscillator and at the same time to the number of divalent atoms in close-packed triangles and tetrahedrons. Ab initio molecular dynamics simulations for Na and Mg clusters support the results of the jellium model.
The vibrational levels of methane obtained from analyses of high-resolution spectra
2006
International audience; Methane and its tetrahedral isotopologues are spherical-top molecules whose high-resolution rovibrational spectra can only be analyzed in detail, thanks to sophisticated symmetry-adapted tensorial models. However, the effective Hamiltonian parameters of such models do not give direct access to the positions of the vibrational sublevels. In this paper, we present a calculation of the vibrational level positions for 12CH4, 13CH4, 12CD4 and 13CD4 performed using the effective Hamiltonian parameters obtained through recent analyses. We also include the results of a re-analysis of the octad system of 12CH4 performed with a higher order of the development which slightly im…
Self-Assembly of Water-Mediated Supramolecular Cationic Archimedean Solids
2013
Understanding the self-assembly of small structural units into large supramolecular assemblies remains one of the great challenges in structural chemistry. We have discovered that tetrahedral supramolecular cages, exhibiting the shapes of Archimedean solids, can be self-assembled by hydrogen bonding interactions using tricationic N-donors (1 or 2) in cooperation with water (W). Single crystal X-ray analysis shows that cage (2)4(W)6, assembled in an aqueous solution of cation 2 and KPF6, consists of four tripodal trications linked by six water monomers and resembles the shape of a truncated tetrahedron. Similarly, cage (1)4(W6)4 spontaneously self-assembles in an aqueous solution of cation 1…
Structural and Vibrational Study of a New Mixed Dipotassium Hydrogenselenate Dihydrogenphosphate K2(HSeO4)1.5 (H2PO4)0.5.
2006
Abstract Ongoing studies of the KHSeO4–KH2PO4 system, aimed at developing novel proton conducting solids, resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals have been prepared by slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by X-ray single analysis (performed at room temperature), which revealed that K2(HSeO4)1.5(H2PO4)0.5 (KHSeP) crystallizes in space group P 1 ¯ with lattice parameters: a = 7.417(3) A, b = 7.668(2) A, c = 7.744(5) A, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. The compound has a unit cell volume 416.8(3) A3 and two formula unit…
MZ-35, a new layered pentasil borosilicate synthesized in the presence of large alkali cations
2013
Abstract A new layered borosilicate has been synthesized in the presence of cesium and sodium cations and its structure has been solved by a combination of automated diffraction tomography (ADT) and X-ray powder diffraction (XRPD). MZ-35 has a composition NaCs 2 [BSi 7 O 16 (OH) 2 ](OH) 2 ·4H 2 O and features space group P-4m2. The unusually small unit cell ( a 7.3081 A, c 10.7520 A) is shared by two random-stacked configurations of the structure: a network of connected pentasil units related to the layer of RUB-18 and a bidimensional checkerboard of intersecting ladders of 4-membered rings. The two configurations are related by the simple face-sharing inversion of a hydroxyl-bearing tetrah…