Search results for "Thapsigargin"

showing 10 items of 28 documents

The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor

2021

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …

0301 basic medicineBiFC bimolecular fluorescence complementationMST microscale thermophoresisPDIA1 protein disulfide isomerase family A member 1ApoptosisNEUROTROPHIC FACTOR MANFEndoplasmic ReticulumBiochemistryprotein-protein interactionMiceBimolecular fluorescence complementationUPR unfolded protein responseENDOPLASMIC-RETICULUM STRESSMesencephalonNeurotrophic factorsInsulin-Secreting CellsProtein Interaction MappingBINDINGCOMPREHENSIVE RESOURCEATF6unfolded protein response (UPR)PDIA6 protein disulfide isomerase family A member 6PPIs protein-protein interactionsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsNPTN neuroplastinbiologyChemistryapoptosisunfolded protein responsedopamine neurons3. Good healthCell biologyGDNF glial cell line–derived neurotrophic factorIRE1-ALPHASBD substrate-binding domainendoplasmic reticulum stressMANF mesencephalic astrocyte-derived neurotrophic factorTm tunicamycinneuroprotectionResearch ArticleProtein BindingSignal TransductionGRP78Protein Disulfide-Isomerase FamilyCell SurvivalTH tyrosine hydroxylasePrimary Cell CultureSCG superior cervical ganglionProtein Disulfide-IsomerasesIRE1 inositol-requiring enzyme 1ER-STRESSER endoplasmic reticulum03 medical and health sciencesohjelmoitunut solukuolemaC-MANF C-terminal domain of MANFCSPs chemical shift perturbationsAnimalsHumansHSP70 Heat-Shock ProteinsNerve Growth FactorsNBD nucleotide-binding domainNMR nuclear magnetic resonanceMolecular Biology030102 biochemistry & molecular biologyBIPATF6Dopaminergic NeuronsGene Expression ProfilingBinding proteinneuronal cell deathDISSOCIATIONCell BiologyNEI nucleotide exchange inhibitorEmbryo MammalianadenosiinitrifosfaattiATPhermosolutmesencephalic astrocyte-derived neurotrophic factorprotein–protein interactionPERK protein kinase RNA-like ER kinaseHEK293 Cells030104 developmental biologyGene Expression RegulationChaperone (protein)Tg thapsigarginbiology.proteinUnfolded protein responseAP-MS affinity purification mass spectrometry1182 Biochemistry cell and molecular biologyGFP-SH SH-tagged GFPendoplasmic reticulum stress (ER stress)DA dopaminemesencephalic astrocyte-derived neurotrophic factor (MANF)proteiinitNeuroplastin
researchProduct

Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack

2019

Efavirenz (EFV), a first generation non-nucleoside analogue reverse transcriptase inhibitor widely employed in combination antiretroviral therapy regimens over the last 20 years, has been associated with a wide range of neuropsychiatric effects and has also been linked with HIV-associated neurocognitive disorder (HAND). EFV has been reported to alter mitochondrial dysfunction and bioenergetics in different cell types, including astrocytes. Here, we analyzed whether this mitochondrial effect is associated with alterations in autophagy and, more specifically, mitophagy. U251-MG cells were exposed to EFV (10 and 25 μM; 24 h) and the effect was compared with that of CCCP - an uncoupler of the m…

0301 basic medicineCyclopropanesCell typeThapsigarginEfavirenz030106 microbiologyMitochondrial DegradationBiologyMitochondrionPharmacologyMitochondrial Proteins03 medical and health scienceschemistry.chemical_compoundCitologíaVirologyCell Line TumorMitophagymedicineAutophagyHumansPharmacologyReverse-transcriptase inhibitorBiología celularAutophagyAutophagosomesMitophagyBenzoxazinesMitochondriaAntiretroviral030104 developmental biologychemistryAnti-Retroviral AgentsAlkynesAstrocytesReverse Transcriptase InhibitorsEfavirenzVirologíamedicine.drug
researchProduct

Ryanodine receptor- and sodium-calcium exchanger-mediated spontaneous calcium activity in immature oligodendrocytes in cultures

2019

Myelination in the central nervous system depends on interactions between axons and oligodendrocyte precursor cells (OPCs). Action potentials in an axon can be followed by release of biologically active substances, like glutamate, which can instruct OPCs to start myelination. Myelin Basic Protein (MBP) is an "executive molecule of myelin" required for the formation of compact myelin. As cells of the oligodendrocyte lineage (OLCs) are capable of producing MBP in pure oligodendrocyte cultures, i.e. without neurons, we investigated Ca2+ signaling in developing OLCs in cultures. We show that spontaneous Ca2+ transients (CTs) occur at very low frequency in both bipolar OPCs and mature oligodendr…

0301 basic medicineThapsigarginSodium-Calcium Exchanger03 medical and health scienceschemistry.chemical_compoundMyelin0302 clinical medicineCompact myelinmedicineAnimalsCalcium SignalingAxonOuabainCells CulturedMyelin SheathNeuronsbiologySodium-calcium exchangerChemistryRyanodine receptorGeneral NeuroscienceSodiumThioureaRyanodine Receptor Calcium Release ChannelOligodendrocyteMyelin basic proteinCell biologyMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systembiology.proteinCalcium030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation.

1999

The study was conducted on a human (Jurkat) T cell line, loaded with a Na+ fluorescent probe, SBFI/AM. Serotonin and an agonist of 5-HT3 receptor-channels, 2-methyl-5HT, evoked Na+ influx, whereas the agonists of other serotonergic receptor subtypes, i.e., 5-HT1A and 5-HT1B receptors, failed to induce Na+ influx in these cells. By using 3H-BRL43694, an agonist of 5-HT3 receptor-channels, we characterized 5-HT3 lymphocyte receptors which exhibited a density (Bmax) of 300 +/- 20 fmol/10(6) cells and a Kd of 30 nM in Jurkat T cells. The T-cell 5-HT3 receptor-channel is not regulated either by the protein kinase C or by the free intracellular calcium concentrations as the agents known to activa…

AgonistSerotoninmedicine.drug_classMetoclopramideT cellT-LymphocytesImmunologyBiologyLymphocyte ActivationJurkat cellsCalcium in biologyPiperazinesSodium ChannelsGranisetronJurkat CellsQuinoxalinesmedicineImmunology and AllergyHumansCalcium SignalingPhytohemagglutininsReceptorProtein kinase C5-HT receptorProtein Kinase C8-Hydroxy-2-(di-n-propylamino)tetralinIon TransportRyanodineCell CycleSodiumCell biologyNeoplasm ProteinsSerotonin Receptor AgonistsEnzyme Activationmedicine.anatomical_structureNeurologyReceptors SerotoninReceptor Serotonin 5-HT1BThapsigarginNeurology (clinical)Serotonin AntagonistsReceptors Serotonin 5-HT3Ion Channel GatingReceptors Serotonin 5-HT1IntracellularJournal of neuroimmunology
researchProduct

Mycobacterial antigen(s) induce anergy by altering TCR- and TCR/CD28-induced signalling events: insights into T-cell unresponsiveness in leprosy.

2009

Present study investigates the role of Mycobacterium leprae (M. leprae) antigens on TCR- and TCR/CD28-induced signalling leading to T-cell activation and further correlates these early biochemical events with T-cell anergy, as prevailed in advanced stages of leprosy. We observed that both whole cell lystae (WCL) and soluble fraction of M. leprae sonicate (MLSA) not only inhibited TCR, thapsigargin and ionomycin induced calcium fluxes by diminishing the opening of calcium channels, but also TCR- or TCR/CD28-induced proximal signalling events like phosphorylation of Zap-70 and protein kinase-C (PKC) activity. Study of TCR- and TCR/CD28-induced downstream signals revealed that M. leprae antige…

Antigens Differentiation T-LymphocyteMAP Kinase Signaling SystemT cellT-LymphocytesImmunologyReceptors Antigen T-Cellchemical and pharmacologic phenomenaBiologyLymphocyte ActivationJurkat cellsp38 Mitogen-Activated Protein Kinaseschemistry.chemical_compoundJurkat CellsCD28 AntigensAntigens CDLeprosyCalcium fluxmedicineHumansLectins C-TypeEnzyme InhibitorsPromoter Regions GeneticMolecular BiologyMycobacterium lepraeProtein Kinase CCell ProliferationClonal AnergyAntigens BacterialMitogen-Activated Protein Kinase 3ZAP-70 Protein-Tyrosine KinaseIonophoresNFATC Transcription FactorsIonomycinT-cell receptorInterleukin-2 Receptor alpha SubunitCD28hemic and immune systemsNFATbiology.organism_classificationCell biologyMycobacterium lepraemedicine.anatomical_structurechemistryGene Expression RegulationIonomycinImmunologyInterleukin-2ThapsigarginCalciumMolecular immunology
researchProduct

Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

2013

Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further st…

CD36 AntigensMaleTasteAnatomy and PhysiologyCD36BiochemistryCalcium in biologyFatschemistry.chemical_compoundMolecular Cell BiologySignaling in Cellular ProcessesMembrane Receptor Signalingchemistry.chemical_classificationMultidisciplinarybiologyQRTaste PerceptionTaste BudsLipidsSensory SystemsLipid SignalingCytochemistryThapsigarginMedicinePsammomysDisease SusceptibilityIntracellularResearch ArticleSignal Transductionmedicine.medical_specialtyThapsigarginClinical Research DesignLinoleic acidScienceLinoleic AcidFood PreferencesInternal medicinemedicineAnimalsCalcium SignalingObesityAnimal Models of DiseaseBiologyNutritionCell MembraneFatty acidProteinsbiology.organism_classificationLipid MetabolismDietary FatsGustatory SystemTransmembrane ProteinsEndocrinologyMetabolismchemistryGene Expression Regulationbiology.proteinGerbillinaeMembrane CompositionNeurosciencePLoS ONE
researchProduct

Postsynaptic Secretion of BDNF and NT-3 from Hippocampal Neurons Depends on Calcium–Calmodulin Kinase II Signaling and Proceeds via Delayed Fusion Po…

2007

The mammalian neurotrophins (NTs) NGF, BDNF, NT-3, and NT-4 constitute a family of secreted neuronal growth factors. In addition, NTs are implicated in several forms of activity-dependent synaptic plasticity. Although synaptic secretion of NTs has been described, the intracellular signaling cascades that regulate synaptic secretion of NTs are far from being understood. Analysis of NT secretion at the subcellular level is thus required to resolve the role of presynaptic and postsynaptic NT secretion for synaptic plasticity. Here, we transfected cultures of dissociated rat hippocampal neurons with green fluorescent protein-tagged versions of BDNF and NT-3, respectively, and identified NT vesi…

Calcium Channels L-TypeBiologyNeurotransmissionInhibitory postsynaptic potentialHippocampusReceptors N-Methyl-D-AspartateSynaptic TransmissionExocytosisNeurotrophin 3Postsynaptic potentialCa2+/calmodulin-dependent protein kinaseAnimalsCalcium SignalingNeuronsBrain-Derived Neurotrophic FactorGeneral NeuroscienceRyanodine Receptor Calcium Release ChannelLong-term potentiationArticlesCyclic AMP-Dependent Protein KinasesRatsCell biologynervous systemBiochemistryTrk receptorCalcium-Calmodulin-Dependent Protein KinasesSynapsesSynaptic plasticityThapsigarginCalcium-Calmodulin-Dependent Protein Kinase Type 2Postsynaptic densityThe Journal of Neuroscience
researchProduct

Effects of Zizyphus lotus L. (Desf.) polyphenols on Jurkat cell signaling and proliferation.

2013

We assessed the effects of Zizyphus lotus L. (Desf.) polyphenols (ZLP) on T-cell signaling and proliferation. Our results showed that ZLP exerted no effect on the increases in intracellular free calcium concentrations, [Ca(2+)]i, in human Jurkat T-cells. However, ZLP modulated the thapsigargin-induced increases in [Ca(2+)]i in these cells. ZLP treatment was found to decrease the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, ZLP induced a rapid (t1/2=33s) and dose-dependent decrease in intracellular pH (pHi) in human Jurkat T-cells. Furthermore, ZLP significantly curtailed T-cell proliferation by diminishing their progression from S to G2/M phase of cell…

Cell signalingIntracellular pHT-LymphocytesImmunologychemistry.chemical_elementCalciumBiologyJurkat cellsJurkat CellsExtracellularImmunology and AllergyHumansCalcium SignalingRNA MessengerExtracellular Signal-Regulated MAP KinasesCell ProliferationPharmacologyImmunosuppression TherapyInflammationKinasePolyphenolsZiziphusCell cycleCell biologyBiochemistrychemistryGene Expression RegulationFruitPhosphorylationInterleukin-2ThapsigarginInternational immunopharmacology
researchProduct

ER stress in human hepatic cells treated with Efavirenz: Mitochondria again

2013

Background & Aims ER stress is associated with a growing number of liver diseases, including drug-induced hepatotoxicity. The non-nucleoside analogue reverse transcriptase inhibitor Efavirenz, a cornerstone of the multidrug strategy employed to treat HIV1 infection, has been related to the development of various adverse events, including metabolic disturbances and hepatic toxicity, the mechanisms of which remain elusive. Recent evidence has pinpointed a specific mitochondrial effect of Efavirenz in human hepatic cells. This study assesses the induction of ER stress by Efavirenz in the same model and the implication of mitochondria in this process. Methods Primary human hepatocytes and Hep3B…

CyclopropanesEfavirenzXBP1Anti-HIV AgentsMitochondria LiverMitochondrionBiologyPharmacologyModels BiologicalCell Linechemistry.chemical_compoundMicroscopy Electron TransmissionDownregulation and upregulationHumansSide effectsEndoplasmic Reticulum Chaperone BiPCells CulturedHepatologyEndoplasmic reticulumHepatotoxicityATF4HIVEndoplasmic Reticulum StressHIV Reverse TranscriptaseBenzoxazinesMitochondriachemistryAlkynesHepatocytesHepatic stellate cellUnfolded protein responseReverse Transcriptase InhibitorsThapsigarginCalciumEfavirenzER stressBiomarkersJournal of Hepatology
researchProduct

Thapsigargin-stimulated MAP kinase phosphorylation via CRAC channels and PLD activation: inhibitory action of docosahexaenoic acid.

2004

AbstractThis study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca2+ stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished…

MAPK/ERK pathwayThapsigarginDocosahexaenoic AcidsBiophysicschemistry.chemical_elementCalciumBiochemistryDiglycerideschemistry.chemical_compoundJurkat CellsStructural BiologyGeneticsPhospholipase DHumansPhosphorylationMolecular BiologyProtein kinase CProtein Kinase CDiacylglycerol kinaseMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Phospholipase CChemistryKinasePhospholipase DRyanodine Receptor Calcium Release ChannelCell BiologyJurkat T-cellCell biologyEnzyme Activationenzymes and coenzymes (carbohydrates)Docosahexaenoic acidFatty Acids UnsaturatedThapsigarginlipids (amino acids peptides and proteins)CalciumMitogen-Activated Protein KinasesFEBS letters
researchProduct