Search results for "The Standard Model"
showing 10 items of 466 documents
Reparametrization invariance ofBdecay amplitudes and implications for new physics searches inBdecays
2005
When studying $B$ decays within the standard model (SM), it is customary to use the unitarity of the CKM matrix in order to write the decay amplitudes in terms of only two of the three weak phases which appear in the various diagrams. Occasionally, it is mentioned that those two weak phases can be used in order to describe any decay amplitude, even beyond the standard model. Here we point out that, when describing a generic decay amplitude, the two weak phases can be chosen completely at will, and we study the behavior of the decay amplitudes under changes in the two weak phases chosen as a basis. Of course, physical observables cannot depend on such reparametrizations. This has an impact o…
Model independent search for new phenomena inpp¯collisions ats=1.96 TeV
2012
We describe a model independent search for physics beyond the standard model in lepton final states. We examine 117 final states using 1.1 fb$^{-1}$ of $p \bar{p}$ collisions data at $\sqrt{s} = 1.96$ TeV collected with the D0 detector. We conclude that all observed discrepancies between data and model can be attributed to uncertainties in the standard model background modeling, and hence we do not see any evidence for physics beyond the standard model.
Initial results from the PIENU experiment
2017
The pion branching ratio, $R_{\pi } = \frac { {\Gamma }(\pi ^{+} \rightarrow e^{+} \nu _{e} + \pi ^{+}\rightarrow e^{+} \nu _{e} \gamma )}{\Gamma (\pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } + \pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } \gamma )}$ , provides a sensitive test of lepton universality and constraints on many new physics scenarios. The theoretical uncertainty on the Standard Model prediction of R π is 0.02 %, a factor of twenty smaller than the experimental uncertainty. The analysis of a subset of data taken by the PIENU experiment will be presented. The result, R π = (1.2344 ± 0.0023(s t a t) ± 0.0019(s y s t)) ⋅ 10−4 [1], is consistent with the Standard Model prediction and repres…
Probing new physics by comparing solar and KamLAND data
2004
We explore whether KamLAND and solar data may end up inconsistent when analyzed in terms of two-flavor neutrino oscillations. If this turned out to be the case, one would be led to conclude that there is more new physics, besides neutrino masses and mixing, in the leptonic sector. On the other hand, given that KamLAND and solar data currently agree when analyzed in terms of two-flavor neutrino oscillations, one is able to place nontrivial bounds on several manifestations of new physics. In particular, we compute how well a combined KamLAND and solar data analysis is able to constrain a specific form of violation of CPT invariance by placing a very stringent upper bound, |Delta m^2 - Delta b…
Revisiting pseudo-Dirac neutrinos
2001
We study the pseudo-Dirac mixing of left and right-handed neutrinos in the case where the Majorana masses M_L and M_R are small when compared with the Dirac mass, M_D. The light Majorana masses could be generated by a non-renormalizable operator reflecting effects of new physics at some high energy scale. In this context, we obtain a simple model independent closed bound for M_D. A phenomenologically consistent scenario is achieved with M_L,M_R ~ 10^{-7} eV and M_D ~ 10^{-5}-10^{-4} eV. This precludes the possibility of positive mass searches in the planned future experiments like GENIUS or in tritium decay experiments. If on the other hand, GENIUS does observe a positive signal for a Major…
Search forCPviolation in neutralDmeson Cabibbo-suppressed three-body decays
2008
Using 385fb-1 of e+e- collision data collected at center-of-mass energies around 10.6 GeV, we search for time-integrated CP violation in the Cabibbo-suppressed decays D0/D0→π-π+π0 and D0/D0→K-K+π0 with both model-independent and model-dependent methods. Measurements of the asymmetries in amplitudes of flavor states and CP eigenstates provide constraints on theories beyond the standard model, some of which predict CP violation in amplitudes at the 1% level or higher. We find no evidence of CP violation and hence no conflict with the standard model. © 2008 The American Physical Society.
Present Status of b → sℓ + ℓ − Anomalies
2017
Abstract We discuss the observed deviations in b → s l + l − processes from the Standard Model predictions and present global fits for the New Physics description of these anomalies. We further investigate the stability of the global fits under different theoretical assumptions and suggest strategies and a number of observables to clear up the source of the anomalies.
A(4)-based neutrino masses with Majoron decaying dark matter
2010
We propose an A(4) flavor-symmetric SU(3) circle times SU(2) circle times U(1) seesaw model where lepton number is broken spontaneously. A consistent two-zero texture pattern of neutrino masses and mixing emerges from the interplay of type-I and type-II seesaw contributions, with important phenomenological predictions. We show that, if the Majoron becomes massive, such seesaw scenario provides a viable candidate for decaying dark matter, consistent with cosmic microwave background lifetime constraints that follow from current WMAP observations. We also calculate the subleading one-loop-induced decay into photons which leads to a monoenergetic emission line that may be observed in future x-r…
Status and prospects of ‘bi-large’ leptonic mixing
2019
Bi-large patterns for the leptonic mixing matrix are confronted with current neutrino oscillation data. We analyse the status of these patterns and determine, through realistic simulations, the potential of upcoming long-baseline experiment DUNE in testing bi-large \emph{ansatze} and discriminating amongst them.
Angular observables for spin discrimination in boosted diboson final states
2016
We investigate the prospects for spin determination of a heavy diboson resonance using angular observables. Focusing in particular on boosted fully hadronic final states, we detail both the differences in signal efficiencies and distortions of differential distributions resulting from various jet substructure techniques. We treat the 2 TeV diboson excess as a case study, but our results are generally applicable to any future discovery in the diboson channel. Scrutinizing ATLAS and CMS analyses at 8 TeV and 13 TeV, we find that the specific cuts employed in these analyses have a tremendous impact on the discrimination power between different signal hypotheses. We discuss modified cuts that c…