Search results for "The Standard Model"
showing 10 items of 466 documents
Measurements of new physics inB→ππdecays
2005
If new physics (NP) is present in B{yields}{pi}{pi} decays, it can affect the isospin I=2 or I=0 channels. In this paper, we discuss various methods for detecting and measuring this NP. The techniques have increasing amounts of theoretical hadronic input. If NP is eventually detected in B{yields}{pi}{pi}--there is no evidence for it at present--one will be able to distinguish I=2 and I=0, and measure its parameters, using these methods.
Disentangling new physics contributions in lepton flavour violating τ decays
2016
Abstract The possibility to discriminate between different operators contributing to lepton flavour violating tau decays is discussed within an effective field theory framework. Correlations among decay rates in different channels as well as differential distributions in many-body decays are considered. Recent developments in the determination of the hadronic form factors for τ → l π π ( l = e , μ ) decays are incorporated in the analysis. The above issues are exemplified by considering a Higgs-like boson with lepton flavour violating couplings. Implications of the search for lepton flavour violating Higgs decays performed recently by the CMS collaboration are also discussed.
331 models and grand unification: From minimal SU(5) to minimal SU(6)
2016
We consider the possibility of grand unification of the $\mathrm{ SU(3)_c \otimes SU(3)_L \otimes U(1)_X}$ model in an SU(6) gauge unification group. Two possibilities arise. Unlike other conventional grand unified theories, in SU(6) one can embed the $\mathrm{ SU(3)_c \otimes SU(3)_L \otimes U(1)_X}$ model as a subgroup such that different multiplets appear with different multiplicities. Such a scenario may emerge from the flux breaking of the unified group in an E(6) F-theory GUT. This provides new ways of achieving gauge coupling unification in $\mathrm{ SU(3)_c \otimes SU(3)_L \otimes U(1)_X}$ models while providing the radiative origin of neutrino masses. Alternatively, a sequential va…
Neutrinoless double-beta decay and physics beyond the standard model
2012
Neutrinoless double beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double beta decay and neutrino mass, review a general Lorentz invariant parametrization of the double beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double beta decay, and finally discuss possibilities to discriminate and test these models and mechanisms in complementary experiments.
Effective aligned 2HDM with a DFSZ-like invisible axion
2014
We discuss the possibility of having a non-minimal scalar sector at the weak scale within the framework of invisible axion models. To frame our discussion we consider an extension of the Dine-Fischler-Srednicki-Zhitnitsky invisible axion model with two additional Higgs doublets blind under the Peccei-Quinn symmetry. Due to mixing effects among the scalar fields, it is possible to obtain a rich scalar sector at the weak scale in certain decoupling limits of the theory. In particular, this framework provides an ultraviolet completion of the so-called aligned two-Higgs-doublet model and solves the strong CP problem. The axion properties and the smallness of active neutrino masses are also disc…
Exploring the intrinsic Lorentz-violating parameters at DUNE
2018
Neutrinos can push our search for new physics to a whole new level. What makes them so hard to be detected, what allows them to travel humongous distances without being stopped or deflected allows to amplify Planck suppressed effects (or effects of comparable size) to a level that we can measure or bound in DUNE. In this work we analyze the sensitivity of DUNE to CPT and Lorentz-violating interactions in a framework that allows a straightforward extrapolation of the bounds obtained to any phenomenological modification of the dispersion relation of neutrinos.
Vacuum stability with spontaneous violation of lepton number
2016
The vacuum of the Standard Model is known to be unstable for the measured values of the top and Higgs masses. Here we show how vacuum stability can be achieved naturally if lepton number is violated spontaneously at the TeV scale. More precise Higgs measurements in the next LHC run should provide a crucial test of our symmetry breaking scenario. In addition, these schemes typically lead to enhanced rates for processes involving lepton flavour violation .
Quasi-model-independent search for new physics at large transverse momentum
2001
We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of …
Spontaneous proton decay and the origin of Peccei-Quinn symmetry
2019
We propose a new interpretation of Peccei-Quinn symmetry within the Standard Model, identifying it with the axial $B + L$ symmetry i.e. $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$. This new interpretation retains all the attractive features of Peccei-Quinn solution to strong CP problem but in addition also leads to several other new and interesting consequences. Owing to the identification $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$ the axion also behaves like Majoron inducing small seesaw masses for neutrinos after spontaneous symmetry breaking. Another novel feature of this identification is the phenomenon of spontaneous (and also chiral) proton decay with its decay rate associated with the axion…
Jet substructure measurements of interference in non-interfering SMEFT effects
2019
The tails of diboson production at the LHC are sensitive to the interference between Standard Model and higher dimension operators parameterizing the effects of heavy new physics. However, helicity selection rules for the diboson scattering amplitudes set an obstruction to the na\"ive interference contributions of dimension six operators, causing the total diboson rate correction's leading contribution to cancel. In this case, carefully measuring the azimuthal decay angles "resurrects" the interference, recouping sensitivity to the "non-interfering" operators. We explore these signatures in detail, and find that the EFT uncertainties associated with higher-dimensional operators are uniquely…