Search results for "The Standard Model"
showing 10 items of 466 documents
Lepton flavor violation in a Z′ model for the b→s anomalies
2019
In recent years, several observables associated to semileptonic $b \to s$ processes have been found to depart from their predicted values in the Standard Model, including a few tantalizing hints of lepton flavor universality violation. In this work we consider an existing model with a massive $Z^\prime$ boson that addresses the anomalies in $b \to s$ transitions and extend it with a non-trivial embedding of neutrino masses. We analyze lepton flavor violating effects, induced by the non-universal interaction associated to the $b \to s$ anomalies and by the new physics associated to the neutrino mass generation, and determine the expected ranges for the most relevant observables.
Search for exotic spin-dependent interactions with a spin-based amplifier
2021
Description
Search for axion-like dark matter with spin-based amplifiers
2021
Ultralight axion-like particles (ALPs) are well-motivated dark matter candidates introduced by theories beyond the standard model. However, the constraints on the existence of ALPs through existing laboratory experiments are hindered by their current sensitivities, which are usually weaker than astrophysical limits. Here, we demonstrate a new quantum sensor to search for ALPs in the mass range that spans about two decades from 8.3 feV to 744 feV. Our sensor makes use of hyperpolarized long-lived nuclear spins as a pre-amplifier that effectively enhances coherently oscillating axion-like dark-matter field by a factor of >100. Using spin-based amplifiers, we achieve an ultrahigh magnetic s…
Self-interacting dark matter and cosmology of a light scalar mediator
2016
We consider a fermionic dark matter candidate interacting via a scalar mediator coupled with the Standard Model through a Higgs portal. We consider a general setting including both scalar and pseudoscalar interactions between the scalar and fermion, and illustrate the relevant features for dark matter abundance, direct search limits and collider constraints. The case where dark matter has a self-interaction strength $⟨{\ensuremath{\sigma}}_{V}⟩/{m}_{\ensuremath{\psi}}\ensuremath{\sim}0.1--1\text{ }\text{ }{\mathrm{cm}}^{2}/\mathrm{g}$ is strongly constrained, in particular by the big bang nucleosynthesis. We show that these constraints can be alleviated by introducing a new light sterile ne…
Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay
2020
Neutrinoless double beta decay (0νββ) is a crucial test for lepton number violation. Observation of this process would have fundamental implications for neutrino physics, theories beyond the Standard Model and cosmology. Focusing on so-called short-range operators of 0νββ and their potential interplay with the standard light Majorana neutrino exchange, we present the first complete calculation of the relevant nuclear matrix elements, performed within the interacting boson model (IBM-2). Furthermore, we calculate the relevant phase space factors using exact Dirac electron wave functions, taking into account the finite nuclear size and screening by the electron cloud. The obtained numerical r…
New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter
2020
Abstract The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the fore…
Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments?
2017
One of the fundamental parameters entering the neutrino oscillation framework is the leptonic $CP$ phase ${\ensuremath{\delta}}_{13}$, and its measurement is an important goal of the planned long baseline experiments. It should be noted that ordinary matter effects complicate the determination of this parameter, and there are studies in the literature that deal with separation of intrinsic vs extrinsic $CP$ violation. It is important to investigate the consequences of new physics effects that can not only hamper the measurement of ${\ensuremath{\delta}}_{13}$ but also impact the consequences of discrete symmetries such as $CP$, $T$, and unitarity in different oscillation channels. In the pr…
The W and Z boson spin observables as messengers of New Physics at LHC
2017
The successful LHC operation suggests going beyond the search of excess of events for the quest of new physics. We demonstrate that the eight multipole parameters describing the spin state of the W or Z bosons are able to disentangle their hidden production mechanism. They can be separately extracted from well defined angular asymmetries in the leptonic distribution of boson decays. The discriminating power of this analysis is well illustrated by: (i) polarised top quark decays, (ii) two body decay of heavy resonances, (iii) Drell-Yan production of Z plus jets, (iv) Z boson plus missing transverse energy.
Perturbative Unitarity Constraints on Charged/Colored Portals
2015
Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak or QCD phase transitions. This implies a new scale of physics and mediator particles needed to facilitate dark matter annihilations. In this work, we consider scenarios where thermal dark matter annihilates via scalar mediators that are colored and/or electrically charged. We show how partial wave unitarity places upper bounds on the masses and couplings on both the dark matter and mediators. To do this, we employ effective field theories with dark matter as well as three flavors of sleptons or squarks with minimum flavor violation. For Dirac (…
Perturbative unitarity constraints on the NMSSM Higgs Sector
2018
Abstract We place perturbative unitarity constraints on both the dimensionful and dimensionless parameters in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) Higgs Sector. These constraints, plus the requirement that the singlino and/or Higgsino constitutes at least part of the observed dark matter relic abundance, generate upper bounds on the Higgs, neutralino and chargino mass spectrum. Requiring higher-order corrections to be no more than 41% of the tree-level value, we obtain an upper bound of 20 TeV for the heavy Higgses and 12 TeV for the charginos and neutralinos outside defined fine-tuned regions. If the corrections are no more than 20% of the tree-level value, the bounds …