Search results for "The Standard Model"
showing 10 items of 466 documents
Breaking down the entireWboson spin observables from its decay
2015
We discuss the eight independent spin observables for the $W$ boson in terms of its vector and tensor polarizations and identify the angular distributions and asymmetries able to separate them in collider experiments. The results are applied to the study of polarized top quark decays and diboson resonances. These novel observables are of great value for disentangling new physics mechanisms in $W$ boson production.
Constraints on four-fermion interactions from the tt¯ charge asymmetry at hadron colliders
2016
The charge asymmetry in top quark production at hadron colliders is sensitive to beyond-the-Standard-Model four-fermion interactions. In this study we compare the sensitivity of $$t\bar{t}$$ cross-section and charge asymmetry measurements to effective operators describing four-fermion interactions and study the limits on the validity of this approach. A fit to a combination of Tevatron and LHC measurements yields stringent limits on the linear combinations $$C_1$$ and $$C_2$$ of the four-fermion effective operators.
New physics vs new paradigms: distinguishing CPT violation from NSI
2019
Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on th…
Long-lived particles at the energy frontier: the MATHUSLA physics case
2019
We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …
Neutrino oscillation phenomenology in the standard model and beyond
2020
Over the last 20 years measurements of neutrino oscillation parameters have become very precise. In the standard neutrino oscillation picture most of the parameters are measured at the percent level. In this thesis we study neutrino oscillations in the standard picture and beyond. We analyze data from all types of neutrino oscillation experiments to obtain a global picture of neutrino oscillations. The remaining unknowns in the standard picture are the value of the CP-violating phase $\delta$, the octant of the atmospheric angle $\theta_{23}$ and the neutrino mass ordering. We discuss the current status of these unknowns and also comment on how well future experiments will do in measuring t…
Precision tests of QED and non-standard models by searching photon-photon scattering in vacuum with high power lasers
2009
We study how to search for photon-photon scattering in vacuum at present petawatt laser facilities such as HERCULES, and test Quantum Electrodynamics and non-standard models like Born-Infeld theory or scenarios involving minicharged particles or axion-like bosons. First, we compute the phase shift that is produced when an ultra-intense laser beam crosses a low power beam, in the case of arbitrary polarisations. This result is then used in order to design a complete test of all the parameters appearing in the low energy effective photonic Lagrangian. In fact, we propose a set of experiments that can be performed at HERCULES, eventually allowing either to detect photon-photon scattering as du…
Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC
2010
19 páginas, 2 figuras, 1 tabla.-- et al.(ATLAS Collaboration).
Supersymmetry parameter analysis: SPA convention and project.
2005
18 páginas, 6 figuras, 12 tablas.-- et al.
Low-energy symmetries of QCD and the structure of the nucleon
2015
Abstract We present some updated results regarding the scalar and electromagnetic structure of the nucleon obtained by the relativistic formulation of chiral effective field theory with baryons. We compare them with previous determinations available in the literature, and show their relevance for searches of physics beyond the standard model in the low energy frontier.
Low energy structure of the nucleon from chiral effective field theory
2014
We present some updated results regarding the scalar and electromagnetic structure of the nucleon obtained by the relativistic formulation of chiral effective field theory with baryons. We compare them with previous determinations available in the literature, and show their relevance for searches of physics beyond the standard model in the low energy frontier. An accurate knowledge of the structure of the nucleon is important to improve our understanding of the funda- mental interactions and provide theoretical estimations of some important quantities with a small uncertainty. This is specially relevant for experiential searches of physics be- yond the standard model in the low energy front…