Search results for "The Standard Model"
showing 10 items of 466 documents
Nonstandard Yukawa couplings and Higgs portal dark matter
2015
We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross section, on the other hand, is subleading unless the dark matter is very light -- a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet mode…
New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ.
2015
We critically review the assumption that no new physics is acting in tree-level B-meson decays and study the consequences for the ultimate precision in the direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) angle γ. In our exploratory study we find that sizeable universal new physics contributions, ΔC1,2, to the tree-level Wilson coefficients C1,2 of the effective Hamiltonian describing weak decays of the b quark are currently not excluded by experimental data. In particular, we find that ImΔC1 and ImΔC2 can easily be of order ±10% without violating any constraints from data. Such a size of new physics effects in C1 and C2 corresponds to an intrinsic uncertainty in the CKM angle γ …
Charge asymmetries of top quarks at hadron colliders revisited
2011
A sizeable difference in the differential production cross section of top- compared to antitop-quark production, denoted charge asymmetry, has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for "new physics". In the present paper the Standard Model predictions for Tevatron and LHC experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse mome…
Dijets at Tevatron Cannot Constrain SMEFT Four-Quark Operators
2019
We explore the sensitivity of Tevatron data to heavy new physics effects in differential dijet production rates using the SMEFT in light of the fact that consistent and conservative constraints from the LHC cannot cover relatively low cutoff scales in the EFT. In contrast to the results quoted by the experimental collaborations and other groups, we find that, once consistency of the perturbation expansion is enforced and reasonable estimates of theoretical errors induced by the SMEFT series in $\frac{E}{\Lambda}$ are included, there is no potential to constrain four-quark contact interactions using Tevatron data. This shows the general difficulty of constraining physics model-independently …
LHC-scale left-right symmetry and unification
2013
We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional minimal LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton deca…
The Weak-Magnetic Moment of Heavy Quarks
1997
With initial and final particles on-shell, the anomalous weak-magnetic dipole moments of b and c quarks are electroweak gauge invariant quantities of the effective couplings Zb\bar{b} and Zc\bar{c}, respectively, and good candidates to test the Standard Model and/or new physics. Here we present a complete computation of these quantities within the Standard Model. We show that decoupling properties with respect to heavy particles do take place in the weak magnetic moment. The obtained values, a_b(M_Z^2)=(2.98-1.56i)x10^(-4) and a_c(M_Z^2)=(-2.80+1.09i)x10^(-5) are dominated by one-gluon exchange diagrams. The electroweak corrections are less than 1% of the total magnitude.
Semileptonic decays of light quarks beyond the Standard Model
2009
We describe non-standard contributions to semileptonic processes in a model independent way in terms of in SU(2)(L) x U(1)(Y) invariant effective lagrangian at the weak scale, front which we derive the low-energy effective lagrangian governing muon and beta decays. We find that the deviation from Cabibbo universality, Delta(CKM) equivalent to vertical bar V-ud vertical bar(2) + vertical bar V-us vertical bar(2) + vertical bar V-ub vertical bar(2) - 1, receives contributions from four effective operators. The phenomenological bound Delta(CKM) = (-1 +/- 6) x 10(-4) provides strong constraints on all four operators, corresponding to art effective scale Lambda > 11 TeV (90% CL). Depending on th…
Heavy quarks and tau leptons: New physics opportunities
2014
In this talk I discuss the role of heavy quarks in new physics searches with tau leptons. I focus on new physics effects associated to the scalar sector which are naturally enhanced for the heaviest fermions due to the large hierarchy of the fermion masses. I will discuss two topics within this context: lepton flavour violation in the $\tau - \ell$ ($\ell=e,\mu$) sector and violations of lepton universality in tauonic $B$ decays.
D–D¯ mixing and new physics: General considerations and constraints on the MSSM
2007
Abstract Combining the recent experimental evidence of D – D ¯ mixing, we extract model-independent information on the mixing amplitude and on its CP-violating phase. Using this information, we present new constraints on the flavour structure of up-type squark mass matrices in supersymmetric extensions of the Standard Model.
High scale mixing relations as a natural explanation for large neutrino mixing
2015
The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark-lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixin…