Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
A Primer on Memetic Algorithms
2012
Memetic Algorithms (MAs) are population-based metaheuristics composed of an evolutionary framework and a set of local search algorithms which are activated within the generation cycle of the external framework, see [376]. The earliest MA implementation has been given in [621] in the context of the Travelling Salesman Problem (TSP) while an early systematic definition has been presented in [615]. The concept of meme is borrowed from philosophy and is intended as the unit of cultural transmission. In other words, complex ideas can be decomposed into memes which propagate andmutate within a population.Culture, in this way, constantly undergoes evolution and tends towards progressive improvemen…
Identification of Replicator Mutator models
2006
The complexity of biology literally calls for quantitative tools in order to support and validate biologists intuition and traditional qualitative descriptions. In this paper, the Replicator-Mutator models for Evolutionary Dynamics are validated/invalidated in a worst-case deterministic setting. These models analyze the DNA and RNA evolution or describe the population dynamics of viruses and bacteria. We identify the Fitness and the Replication Probability parameters of a genetic sequences, subject to a set of stringent constraints to have physical meaning and to guarantee positiveness. The conditional central estimate is determined in order to validate/invalidate the model. The effectivene…
Large Networks of Dynamic Agents: Consensus under Adversarial Disturbances
2012
This paper studies interactions among homogeneous social groups within the framework of large population games. Each group is represented by a network and the behavior described by a two-player repeated game. The contribution is three-fold. Beyond the idea of providing a novel two-level model with repeated games at a lower level and population games at a higher level, we also establish a mean field equilibrium and study state feedback best-response strategies as well as worst-case adversarial disturbances in that context.
A fuzzy-based tool for modelization and analysis of the vulnerability of aquifers: a case study
2005
Abstract A fuzzy-based tool, called FUZZY-SRA (Fuzzy Spatial Reliability Analysis), is used for realizing a more “reliable” study of the values of the final parameters concerning the vulnerability of aquifers located in the territory of Cava de' Tirreni, city in the district of Salerno (Italy). The SINTACS method is adopted for evaluating the involved parameters and these evaluations are modelled from attributes represented from triangular fuzzy numbers which supply the overall final information if combined with suitable algebraic operations. The tool FUZZY-SRA is implemented inside a GIS (Geographical Information Systems) software.
Temari Balls, Spheres, SphereHarmonic: From Japanese Folkcraft to Music
2022
Temari balls are traditional Japanese toys and artworks. The variety of their geometries and tessellations can be investigated formally and computationally with the means of combinatorics. As a further step, we also propose a musical application of the core idea of Temari balls. In fact, inspired by the classical idea of music of spheres and by the CubeHarmonic, a musical application of the Rubik’s cube, we present the concept of a new musical instrument, the SphereHarmonic. The mathematical (and musical) description of Temari balls lies in the wide background of interactions between art and combinatorics. Concerning the methods, we present the tools of permutations and tessellations we ado…
Multi-parameter analysis of the obstacle scattering problem
2022
Abstract We consider the acoustic field scattered by a bounded impenetrable obstacle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation Δu + k 2 u = 0. We show that the solution u and its far field pattern u ∞ depend real analytically on the shape of the obstacle, the wave number k, and the Dirichlet datum. We also prove a similar result for the corresponding Dirichlet-to-Neumann map.
Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer
2019
In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density…
Developing and evaluating a research-based teaching-learning sequence on the moment of force.
2012
Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition
2018
This special issue of Algorithms is devoted to the study of Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition. The special issue considered both theoretical contributions able to advance the state-of-the-art in this field and practical applications that describe novel approaches for solving real-world problems.
Resonance in Interacting Induced-Dipole Polarizing Force Fields: Application to Force-Field Derivatives
2009
The Silberstein model of the molecular polarizability of diatomic molecules, generalized by Applequist et al. for polyatomic molecules, is analyzed. The atoms are regarded as isotropically polarizable points located at their nuclei, interacting via the fields of their induced dipoles. The use of additive values for atom polarizabilities gives poor results, in some cases leading to artificial predictions of absorption bands. The molecular polarizability of methane and its derivative are computed. The agreement with experimental mean molecular polarizabilities is within 1–5%. A hypothesis is indispensable for a suitable representation of polarizability derivative.